Suppr超能文献

基于数据统计量身定制的改进 BM3D 方案在超低剂量 CT 图像去噪中的应用。

Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.

机构信息

Department of Radiation Oncology, University of California, Los Angeles, CA, 90095, USA.

Departments of Biomedical Physics and Radiology, University of California, Los Angeles, CA, 90095, USA.

出版信息

Med Phys. 2019 Jan;46(1):190-198. doi: 10.1002/mp.13252. Epub 2018 Nov 19.

Abstract

PURPOSE

It is important to enhance image quality for low-dose CT acquisitions to push the ALARA boundary. Current state-of-the-art block-matching three-dimensional (BM3D) denoising scheme assumes white Gaussian noise (WGN) model. This study proposes a novel filtering module to be incorporated into the BM3D framework for ultra-low-dose CT denoising, by accounting for its specific power spectral properties.

METHODS

In the current BM3D algorithm, the Wiener filtering is applied in the transform domain to a post-thresholding signal for enhanced denoising. However, unlike most natural/synthetic images, low-dose CTs do not obey the ideal Gaussian noise model. Based on the specific noise properties of ultra-low-dose CT, we derive the optimal transform-domain coefficients of Wiener filter based on the minimum mean-square-error (MMSE) criterion, taking the noise spectrum and the signal/noise cross spectrum into consideration. In the absence of ground-truth signal, the hard-thresholding denoising module in the previous stage is used as a plug-in estimator. We evaluate the denoising performance on thoracic CT image datasets containing paired full-dose and ultra-low-dose images simulated by a well-validated clinical engine (or pipeline). We also assess its clinical implication by applying the denoising methods to the emphysema quantification task. Our modified BM3D method is compared with the current one, using peak signal-to-noise ratio (PSNR) and emphysema scoring results as evaluation metrics.

RESULTS

The noise in ultra-low-dose CT presented distinct non-Gaussian characteristics and was correlated with image intensity. Performance evaluation showed that the current Wiener filter in basic BM3D algorithm yielded little denoising enhancement on ultra-low-dose CT images. In contrast, the proposed Wiener filter achieved (1.46, 1.91) dB performance gain in mean and median peak signal-to-noise ratio (PSNR) for 5%-dose image denoising and (0.93, 0.95) dB improvement for 10% dose. A paired t-test of the PSNRs between denoising using the current and the proposed Wiener filters demonstrated statistically significant improvement, yielding P-values of 1.45E-12 and 1.34E-7 on 5% and 10%-dose images, respectively. In addition, emphysema quantification on the denoised images using the modified BM3D method also had statistically significant advantage over that using the current BM3D scheme, resulting in a P-value of 6.30E-5 with the commonly used measure.

CONCLUSIONS

This work tailors the Wiener filter in BM3D algorithm to data statistics and demonstrates statistically significant performance improvement on ultra-low-dose CT image denoising and a subsequent emphysema quantification task. Such performance gain is more pronounced with a lower dose level. The development and rationale are generally enough for other image denoising tasks when the WGN assumption is violated.

摘要

目的

提高低剂量 CT 采集的图像质量以推动 ALARA 界限非常重要。当前最先进的基于块匹配的三维(BM3D)去噪方案假设为白高斯噪声(WGN)模型。本研究提出了一种新的滤波模块,将其纳入 BM3D 框架中,用于超低剂量 CT 去噪,同时考虑其特定的功率谱特性。

方法

在当前的 BM3D 算法中,维纳滤波应用于经过后阈值处理的信号的变换域中,以增强去噪效果。然而,与大多数自然/合成图像不同,低剂量 CT 不遵守理想的高斯噪声模型。基于超低剂量 CT 的特定噪声特性,我们根据最小均方误差(MMSE)准则推导出维纳滤波器的最优变换域系数,同时考虑噪声谱和信号/噪声互谱。在没有真实信号的情况下,以前阶段的硬阈值去噪模块用作插件估计器。我们在包含由经过良好验证的临床引擎(或管道)模拟的全剂量和超低剂量图像的胸部 CT 图像数据集上评估去噪性能。我们还通过将去噪方法应用于肺气肿量化任务来评估其临床意义。我们的改进的 BM3D 方法与当前方法进行比较,使用峰值信噪比(PSNR)和肺气肿评分结果作为评估指标。

结果

超低剂量 CT 中的噪声呈现出明显的非高斯特征,并与图像强度相关。性能评估表明,基本 BM3D 算法中的当前维纳滤波器对超低剂量 CT 图像几乎没有增强去噪效果。相比之下,所提出的维纳滤波器在 5%剂量图像去噪方面实现了(1.46,1.91)dB 的平均和中位数峰值信噪比(PSNR)性能增益,在 10%剂量时提高了(0.93,0.95)dB。对当前和所提出的维纳滤波器的 PSNR 进行配对 t 检验,结果显示统计学上有显著改善,在 5%和 10%剂量图像上的 P 值分别为 1.45E-12 和 1.34E-7。此外,使用改进的 BM3D 方法对去噪图像进行肺气肿量化也具有统计学上的优势,与当前的 BM3D 方案相比,P 值为 6.30E-5,这是一种常用的度量标准。

结论

本工作针对 BM3D 算法中的维纳滤波器进行了数据统计调整,并在超低剂量 CT 图像去噪和随后的肺气肿量化任务中证明了统计学上的性能改进。在剂量水平较低时,这种性能增益更为明显。当 WGN 假设不成立时,这种开发和基本原理通常足以用于其他图像去噪任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验