Suppr超能文献

偏离检测是外侧上颞叶听觉语境处理的主要成分:一项人类 ECoG 研究。

Deviance detection is the dominant component of auditory contextual processing in the lateral superior temporal gyrus: A human ECoG study.

机构信息

Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan.

Department of Neurosurgery, Jichi Medical University, Tochigi, Japan.

出版信息

Hum Brain Mapp. 2019 Mar;40(4):1184-1194. doi: 10.1002/hbm.24438. Epub 2018 Oct 24.

Abstract

Auditory contextual processing has been assumed to be based on a hierarchical structure consisting of the primary auditory cortex, superior temporal gyrus (STG), and frontal lobe. Recent invasive studies on mismatch negativity (MMN) have revealed functional segregation for auditory contextual processing such as neural adaptation in the primary auditory cortex and prediction in the frontal lobe. However, the role of the STG remains unclear. We obtained induced activity in the high gamma band as mismatch response (MMR), an electrocorticographic (ECoG) counterpart to scalp MMN, and the components of MMR by analyzing ECoG data from patients with refractory epilepsy in an auditory oddball task paradigm. We found that MMR localized mainly in the bilateral posterior STGs, and that deviance detection largely accounted for MMR. Furthermore, adaptation was identified in a limited number of electrodes on the superior temporal plane. Our findings reveal a mixed contribution of deviance detection and adaptation depending on location in the STG. Such spatial considerations could lead to further understanding of the pathophysiology of relevant psychiatric disorders.

摘要

听觉语境处理被认为是基于一个分层结构,包括初级听觉皮层、颞上回(STG)和额叶。最近关于失匹配负波(MMN)的侵入性研究揭示了听觉语境处理的功能分离,例如初级听觉皮层中的神经适应和额叶中的预测。然而,STG 的作用仍不清楚。我们通过分析难治性癫痫患者在听觉Oddball 任务范式中的脑电描记图(ECoG)数据,获得了高伽马波段的诱发电活动作为失匹配反应(MMR),这是头皮 MMN 的 ECoG 对应物。我们发现 MMR 主要定位于双侧后颞上回,而偏离检测在很大程度上解释了 MMR。此外,在颞上平面的少数电极上发现了适应现象。我们的发现揭示了 STG 中位置不同导致的偏离检测和适应的混合贡献。这种空间考虑可能会进一步理解相关精神障碍的病理生理学。

相似文献

3
Processing of auditory novelty across the cortical hierarchy: An intracranial electrophysiology study.
Neuroimage. 2018 Dec;183:412-424. doi: 10.1016/j.neuroimage.2018.08.027. Epub 2018 Aug 13.
5
Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.
Neuroimage. 2014 Aug 15;97:188-95. doi: 10.1016/j.neuroimage.2014.04.045. Epub 2014 Apr 21.
6
Auditory deviance detection in the human insula: An intracranial EEG study.
Cortex. 2019 Dec;121:189-200. doi: 10.1016/j.cortex.2019.09.002. Epub 2019 Sep 25.
7
Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans.
J Neurophysiol. 2003 Dec;90(6):3750-63. doi: 10.1152/jn.00500.2003. Epub 2003 Sep 10.
8
Mapping phonemic processing zones along human perisylvian cortex: an electro-corticographic investigation.
Brain Struct Funct. 2014 Jul;219(4):1369-83. doi: 10.1007/s00429-013-0574-y. Epub 2013 May 26.
10
Mapping adaptation, deviance detection, and prediction error in auditory processing.
Neuroimage. 2020 Feb 15;207:116432. doi: 10.1016/j.neuroimage.2019.116432. Epub 2019 Dec 3.

引用本文的文献

1
Involuntary motor responses are elicited both by rare sounds and rare pitch changes.
Sci Rep. 2024 Aug 30;14(1):20235. doi: 10.1038/s41598-024-70776-x.
3
Acetylcholine modulates the precision of prediction error in the auditory cortex.
Elife. 2024 Jan 19;12:RP91475. doi: 10.7554/eLife.91475.
4
Triple network activation causes tinnitus in patients with sudden sensorineural hearing loss: A model-based volume-entropy analysis.
Front Neurosci. 2022 Nov 17;16:1028776. doi: 10.3389/fnins.2022.1028776. eCollection 2022.
5
Prediction-Related Frontal-Temporal Network for Omission Mismatch Activity in the Macaque Monkey.
Front Psychiatry. 2022 Apr 26;13:557954. doi: 10.3389/fpsyt.2022.557954. eCollection 2022.
6
Neural Substrates and Models of Omission Responses and Predictive Processes.
Front Neural Circuits. 2022 Feb 1;16:799581. doi: 10.3389/fncir.2022.799581. eCollection 2022.
7
Spatiotemporal target selection for intracranial neural decoding of abstract and concrete semantics.
Cereb Cortex. 2022 Dec 8;32(24):5544-5554. doi: 10.1093/cercor/bhac034.
8
Sources of the frontocentral mismatch negativity and P3a responses in schizophrenia patients and healthy comparison subjects.
Int J Psychophysiol. 2021 Mar;161:76-85. doi: 10.1016/j.ijpsycho.2021.01.005. Epub 2021 Jan 13.
9
Auditory Mismatch Negativity Under Predictive Coding Framework and Its Role in Psychotic Disorders.
Front Psychiatry. 2020 Sep 10;11:557932. doi: 10.3389/fpsyt.2020.557932. eCollection 2020.

本文引用的文献

1
Mismatch negativity in preclinical models of schizophrenia.
Schizophr Res. 2018 Jan;191:35-42. doi: 10.1016/j.schres.2017.07.039. Epub 2017 Jul 30.
2
Modeling Deficits From Early Auditory Information Processing to Psychosocial Functioning in Schizophrenia.
JAMA Psychiatry. 2017 Jan 1;74(1):37-46. doi: 10.1001/jamapsychiatry.2016.2980.
3
Hierarchy of prediction errors for auditory events in human temporal and frontal cortex.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6755-60. doi: 10.1073/pnas.1525030113. Epub 2016 May 31.
4
A Meta-Analysis of Mismatch Negativity in Schizophrenia: From Clinical Risk to Disease Specificity and Progression.
Biol Psychiatry. 2016 Jun 15;79(12):980-7. doi: 10.1016/j.biopsych.2015.08.025. Epub 2015 Aug 31.
5
Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions.
J Neurosci. 2015 Jun 24;35(25):9255-64. doi: 10.1523/JNEUROSCI.5095-14.2015.
7
Disruption of hierarchical predictive coding during sleep.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1353-62. doi: 10.1073/pnas.1501026112. Epub 2015 Mar 3.
9
Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: forecasting psychosis risk with mismatch negativity.
Biol Psychiatry. 2014 Mar 15;75(6):459-69. doi: 10.1016/j.biopsych.2013.07.038. Epub 2013 Sep 16.
10
Auditory mismatch negativity and P3a in response to duration and frequency changes in the early stages of psychosis.
Schizophr Res. 2013 Nov;150(2-3):547-54. doi: 10.1016/j.schres.2013.08.005. Epub 2013 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验