Suppr超能文献

基于多个历史试验的二元结局改良功效先验。

Modified power prior with multiple historical trials for binary endpoints.

机构信息

I-Biostat, UHasselt, Hasselt, Belgium.

Department of Statistics, Jimma University, Jimma, Ethiopia.

出版信息

Stat Med. 2019 Mar 30;38(7):1147-1169. doi: 10.1002/sim.8019. Epub 2018 Oct 25.

Abstract

Including historical data may increase the power of the analysis of a current clinical trial and reduce the sample size of the study. Recently, several Bayesian methods for incorporating historical data have been proposed. One of the methods consists of specifying a so-called power prior whereby the historical likelihood is downweighted with a weight parameter. When the weight parameter is also estimated from the data, the modified power prior (MPP) is needed. This method has been used primarily when a single historical trial is available. We have adapted the MPP for incorporating multiple historical control arms into a current clinical trial, each with a separate weight parameter. Three priors for the weights are considered: (1) independent, (2) dependent, and (3) robustified dependent. The latter is developed to account for the possibility of a conflict between the historical data and the current data. We analyze two real-life data sets and perform simulation studies to compare the performance of competing Bayesian methods that allow to incorporate historical control patients in the analysis of a current trial. The dependent power prior borrows more information from comparable historical studies and thereby can improve the statistical power. Robustifying the dependent power prior seems to protect against prior-data conflict.

摘要

纳入历史数据可以提高当前临床试验分析的效能并减少研究的样本量。最近,已经提出了几种用于纳入历史数据的贝叶斯方法。其中一种方法包括指定所谓的效能先验,通过权重参数来降低历史似然性。当权重参数也从数据中估计时,则需要使用修正的效能先验(MPP)。这种方法主要用于只有一个历史试验可用的情况。我们已经将 MPP 进行了改编,以将多个历史对照臂纳入当前临床试验中,每个对照臂都有单独的权重参数。我们考虑了三种权重的先验:(1)独立,(2)相关,和(3)稳健相关。后者是为了考虑历史数据与当前数据之间可能存在冲突的情况而开发的。我们分析了两个真实数据集并进行了模拟研究,以比较允许在当前试验分析中纳入历史对照患者的竞争贝叶斯方法的性能。相关效能先验可以从可比的历史研究中借鉴更多信息,从而可以提高统计效能。稳健化相关效能先验似乎可以防止先验数据冲突。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验