ACS Appl Mater Interfaces. 2018 Nov 14;10(45):38780-38790. doi: 10.1021/acsami.8b14745. Epub 2018 Oct 31.
If only allowed to proceed naturally, the bone-healing process can take several weeks, months, or even years depending on the injury size. In terms of bone-healing speed, many studies have been conducted investigating the deliverance of various growth factors of implantable biomaterials to shorten the time for bone regeneration. However, there may be side effects such as nerve pain, infection, or ectopic bone formation. As an alternative method, we focused on biophysical guidance, which provided similar topographical cues to the cellular environment to recruit host cells for bone defect healing. In this study, we hypothesized that aligned nanotopographical features have enhanced osteoblast recruitment, migration, and differentiation without external stimuli. We designed and fabricated a biodegradable poly(lactic- co-glycolic acid) nanopatterned patch using simple solvent casting and capillary force lithography. We confirmed that a biodegradable nanopatterned patch (BNP) accelerated the migration of osteoblasts according to the orientation of the patterned direction. These highly aligned osteoblasts may contribute to in vitro osteogenic differentiation, such as alkaline phosphate activity, mineralization, and calcium deposition, compared to the biodegradable flat patch (BFP). To demonstrate bone defect healing by BNP guidance in vivo, we implanted either whole or bridge BNP on the critical size defect of mouse calvarial ( ø 4 mm) or tibia bone (3 × 7 mm). Only the BNP-treated group showed faster new bone formation and compact bone regeneration at the calvarial or tibia bone defect area compared to BFP at 4 or 8 weeks. Bridge BNP guided, in particular, the regeneration of new bone formation along the parallel direction of nanopatterned substrates. Here, we show that a BNP with biophysical guidance should be suitable for use in bone tissue regeneration through accelerated migration of the intact host cell.
如果仅允许自然愈合,根据损伤大小,骨愈合过程可能需要数周、数月甚至数年。在骨愈合速度方面,已经有许多研究调查了各种可植入生物材料的生长因子的释放,以缩短骨再生的时间。然而,可能会有神经疼痛、感染或异位骨形成等副作用。作为一种替代方法,我们专注于生物物理引导,它为细胞环境提供了类似的形貌线索,以招募宿主细胞进行骨缺损愈合。在这项研究中,我们假设定向纳米形貌特征增强了成骨细胞的募集、迁移和分化,而无需外部刺激。我们设计并制造了一种使用简单溶剂铸造和毛细作用力光刻的可生物降解的聚(乳酸-共-羟基乙酸)纳米图案贴片。我们证实,可生物降解的纳米图案贴片(BNP)根据图案方向加速了成骨细胞的迁移。与可生物降解的平片(BFP)相比,这些高度定向的成骨细胞可能有助于体外成骨分化,例如碱性磷酸酶活性、矿化和钙沉积。为了证明 BNP 引导在体内的骨缺损愈合,我们将完整或桥接的 BNP 植入小鼠颅骨(ø4mm)或胫骨(3×7mm)的临界尺寸缺损处。只有 BNP 处理组在颅骨或胫骨缺损区域显示出比 BFP 更快的新骨形成和致密骨再生,分别在 4 或 8 周时。桥接 BNP 引导,特别是沿着纳米图案基底的平行方向引导新骨形成的再生。在这里,我们表明具有生物物理引导的 BNP 应该适合通过完整宿主细胞的加速迁移来用于骨组织再生。