Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany.
Section Biostatistics, Paul-Ehrlich-Institut, Langen, Germany.
Int J Epidemiol. 2018 Oct 1;47(5):1383-1388. doi: 10.1093/ije/dyy093.
To provide an integrated software environment for model fitting and variable selection in regression models with a bounded outcome variable.
The proposed modelling framework is implemented in the add-on package betaboost of the statistical software environment R.
The betaboost methodology is based on beta-regression, which is a state-of-the-art method for modelling bounded outcome variables. By combining traditional model fitting techniques with recent advances in statistical learning and distributional regression, betaboost allows users to carry out data-driven variable and/or confounder selection in potentially high-dimensional epidemiological data. The software package implements a flexible routine to incorporate linear and non-linear predictor effects in both the mean and the precision parameter (relating inversely to the variance) of a beta-regression model.
The software is hosted publicly at [http://github.com/boost-R/betaboost] and has been published under General Public License (GPL) version 3 or newer.
为具有有界因变量的回归模型提供一个用于模型拟合和变量选择的集成软件环境。
所提出的建模框架在统计软件环境 R 的附加包 betaboost 中实现。
betaboost 方法基于 beta 回归,这是一种用于建模有界因变量的最新方法。通过将传统的模型拟合技术与统计学习和分布回归的最新进展相结合,betaboost 允许用户在潜在的高维流行病学数据中进行数据驱动的变量和/或混杂因素选择。该软件包实现了一个灵活的例程,可以在 beta 回归模型的均值和精度参数(与方差成反比)中结合线性和非线性预测因子效应。
该软件在 [http://github.com/boost-R/betaboost] 上公开托管,并根据较新版本的通用公共许可证 (GPL) 发布。