ACS Appl Mater Interfaces. 2018 Nov 21;10(46):39983-39991. doi: 10.1021/acsami.8b15063. Epub 2018 Nov 9.
The use of biocompatible and biodegradable materials in electronic devices can be an important trend in the development of the next-generation green electronics. In addition, by integrating the advantages of low power consumption, low-cost processing, and flexibility, organic synaptic devices will be promising elements for the construction of brain-inspired computers. However, previously reported electrolyte-gated synaptic transistors are mainly made of non-biocompatible and non-biodegradable electrolytes. Woods are widely considered as one kind of sustainable and renewable materials. We found that wood-derived cellulose nanopapers have ionic conductivity and, therefore, can be used as dielectric materials for organic synaptic transistors. The fabricated wood-derived cellulose nanopapers exhibit decent ionic conductivity of 7.3 × 10 S m and a high lateral coupling effective capacitance of 18.65 nF cm at 30 Hz. The laterally coupled organic synaptic transistors using wood-derived cellulose nanopapers as the dielectric layer present excellent transistor performances at the operating voltage below 1.5 V. More significantly, some important synaptic behaviors, such as excitatory postsynaptic current, signal-filtering characteristics, and dendritic integration are successfully simulated in our synaptic transistors. Because the development of electronic devices with biocompatible and biodegradable materials is essential, this work may inspire new directions for the development of "green" neuromorphic electronics.
在电子设备中使用生物相容性和可生物降解材料可能是下一代绿色电子发展的重要趋势。此外,通过整合低功耗、低成本处理和灵活性的优势,有机突触器件将成为构建类脑计算机的有前途的元件。然而,以前报道的电解质门控突触晶体管主要由非生物相容性和不可生物降解的电解质制成。木材被广泛认为是一种可持续和可再生的材料。我们发现,木材衍生的纤维素纳米纸具有离子导电性,因此可以用作有机突触晶体管的介电材料。所制备的木材衍生的纤维素纳米纸在 30 Hz 时表现出 7.3×10 S m 的相当高的离子电导率和 18.65 nF cm 的高横向耦合有效电容。使用木材衍生的纤维素纳米纸作为介电层的横向耦合有机突触晶体管在低于 1.5 V 的工作电压下表现出优异的晶体管性能。更重要的是,我们的突触晶体管成功模拟了一些重要的突触行为,如兴奋性突触后电流、信号滤波特性和树突整合。由于开发具有生物相容性和可生物降解材料的电子设备至关重要,这项工作可能为“绿色”神经形态电子学的发展开辟新的方向。