Suppr超能文献

用于透明细胞肾细胞癌预后的综合评估基因特征

Comprehensive assessment gene signatures for clear cell renal cell carcinoma prognosis.

作者信息

Chang Peng, Bing Zhitong, Tian Jinhui, Zhang Jingyun, Li Xiuxia, Ge Long, Ling Juan, Yang Kehu, Li Yumin

机构信息

School of Life Sciences, Lanzhou University.

Lanzhou University Second Hospital.

出版信息

Medicine (Baltimore). 2018 Nov;97(44):e12679. doi: 10.1097/MD.0000000000012679.

Abstract

There are many prognostic gene signature models in clear cell renal cell carcinoma (ccRCC). However, different results from various methods and samples are hard to contribute to clinical practice. It is necessary to develop a robust gene signature for improving clinical practice in ccRCC.A method was proposed to integrate least absolute shrinkage and selection operator and multiple Cox regression to obtain mRNA and microRNA signature from the cancer genomic atlas database for predicting prognosis of ccRCC. The gene signature model consisted by 5 mRNAs and 1 microRNA was identified. Prognosis index (PI) model was constructed from RNA expression and median value of PI is used to classified patients into high- and low-risk groups.The results showed that high-risk patients showed significantly decrease survival comparison with low-risk groups [hazard ratio (HR) =7.13, 95% confidence interval = 3.71-13.70, P < .001]. As the gene signature was mainly consisted by mRNA, the validation data can use transcriptomic data to verify. For comparison of the performance with previous works, other gene signature models and 4 datasets of ccRCC were retrieved from publications and public database. For estimating PI in each model, 3 indicators including HR, concordance index , and the area under the curve of receiver operating characteristic for 3 years were calculated across 4 independent datasets.The comparison results showed that the integrative model from our study was more robust than other models via comprehensive analysis. These findings provide some genes for further study their functions and mechanisms in ccRCC tumorigenesis and malignance, and may be useful for effective clinical decision making of ccRCC patients.

摘要

在透明细胞肾细胞癌(ccRCC)中有许多预后基因特征模型。然而,不同方法和样本得出的不同结果难以应用于临床实践。有必要开发一种强大的基因特征以改善ccRCC的临床实践。提出了一种整合最小绝对收缩和选择算子与多重Cox回归的方法,从癌症基因组图谱数据库中获取mRNA和微小RNA特征,用于预测ccRCC的预后。鉴定出由5种mRNA和1种微小RNA组成的基因特征模型。根据RNA表达构建预后指数(PI)模型,并使用PI的中位数将患者分为高风险组和低风险组。结果显示,与低风险组相比,高风险患者的生存率显著降低[风险比(HR)=7.13,95%置信区间=3.71-13.70,P<0.001]。由于基因特征主要由mRNA组成,验证数据可使用转录组数据进行验证。为了与先前的研究进行性能比较,从出版物和公共数据库中检索了其他基因特征模型和4个ccRCC数据集。为了估计每个模型中的PI,在4个独立数据集中计算了包括HR、一致性指数以及3年的受试者工作特征曲线下面积在内的3个指标。比较结果表明,通过综合分析,我们研究中的整合模型比其他模型更稳健。这些发现为进一步研究它们在ccRCC肿瘤发生和恶性肿瘤中的功能和机制提供了一些基因,并且可能有助于ccRCC患者的有效临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a0a/6221654/2ba85bd3d474/medi-97-e12679-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验