Suppr超能文献

精细化可开发性分类系统的应用。

Application of a Refined Developability Classification System.

机构信息

Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany.

Product Development and Supply, GlaxoSmithKline R&D, Ware, UK.

出版信息

J Pharm Sci. 2019 Mar;108(3):1090-1100. doi: 10.1016/j.xphs.2018.10.044. Epub 2018 Oct 30.

Abstract

In 2010, the Developability Classification System was proposed as an extension of the Biopharmaceutics Classification System to align the classification system with the need for early evaluation of drug candidates according to their developability as oral formulations. Recent work on the Developability Classification System has resulted in the refined developability classification system (rDCS), consisting of standard investigations to estimate drug candidate solubility and permeability and offering customized investigations that are triggered when there is a potential for supersaturation/precipitation (e.g., salts of acids, weak bases) or to investigate permeation versus dissolution-limited absorption. In the present study, the rDCS concept was successfully applied to 6 marketed compounds (aciclovir, albendazole, danazol, dantrolene, dipyridamole, and piroxicam), for which there is a rich database of information. Furthermore, the rDCS was applied to 20 pipeline compounds from past and current research projects at Bayer AG. The rDCS was able to predict the results in humans correctly in 80% of cases. Overall, the results suggest that the rDCS is a highly useful tool for estimating the in vivo behavior of new drug candidates.

摘要

2010 年,人们提出了可开发性分类系统,作为生物药剂学分类系统的扩展,以根据口服制剂的可开发性对药物候选物进行早期评估。最近对可开发性分类系统的研究产生了改良的可开发性分类系统(rDCS),该系统包括标准调查,以估计候选药物的溶解度和渗透性,并提供定制的调查,当存在过饱和/沉淀的可能性时触发(例如,酸的盐,弱碱),或调查渗透与溶解限制吸收。在本研究中,rDCS 概念成功应用于 6 种市售化合物(阿昔洛韦、阿苯达唑、达那唑、丹曲林钠、双嘧达莫和吡罗昔康),这些化合物有丰富的数据库信息。此外,rDCS 还应用于拜耳公司过去和当前研究项目的 20 种候选化合物。rDCS 能够正确预测 80%的人体研究结果。总体而言,这些结果表明 rDCS 是估计新药物候选物体内行为的非常有用的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验