Suppr超能文献

基于体素的主题影像置换的元分析 (PSI):SDM 的理论与实现。

Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM.

机构信息

FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain.

FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

出版信息

Neuroimage. 2019 Feb 1;186:174-184. doi: 10.1016/j.neuroimage.2018.10.077. Epub 2018 Oct 30.

Abstract

Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method.

摘要

基于坐标的荟萃分析(CBMA)对于总结大量正常大脑功能和神经精神障碍中大脑异常的基于体素的神经影像学研究非常有用。然而,目前的 CBMA 方法并没有进行常见的体素检验,而是进行了收敛性检验,这依赖于一些数据可能很少满足的空间假设,并且在存在多个效应时统计效力较低。在这里,我们提出了一种新的算法,该算法可以使用标准的体素检验,并且重要的是,可以对受试者图像进行标准的置换(PSI)。它的主要步骤是:a)研究图像的多重插补;b)受试者图像的插补;c)基于受试者的置换检验以控制总体错误率(FWER)。PSI 算法具有通用性,我们相信开发人员可能会为几种 CBMA 方法实现它。我们在这里介绍了一种用于种子映射(SDM)方法的 PSI 实现,该方法还受益于使用效应大小、随机效应模型、基于 Freedman-Lane 的置换和无阈值聚类增强(TFCE)统计量等。最后,我们还对 SDM-PSI 中 FWER 的控制进行了实证验证,结果表明其可能过于保守。我们希望神经影像学荟萃分析界会欢迎这个新的算法和方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验