Suppr超能文献

基于两层堆叠框架的碰撞损伤严重度分析。

Crash injury severity analysis using a two-layer Stacking framework.

机构信息

School of Traffic and Transportation Engineering, Smart Transport Key Laboratory of Hunan Province, Central South University, Changsha, 410075, China.

School of Transportation, Southeast University, Nanjing, 210096, China.

出版信息

Accid Anal Prev. 2019 Jan;122:226-238. doi: 10.1016/j.aap.2018.10.016. Epub 2018 Nov 1.

Abstract

Crash injury severity analysis is useful for traffic management agency to further understand severity of crashes. A two-layer Stacking framework is proposed in this study to predict the crash injury severity: The fist layer integrates advantages of three base classification methods: RF (Random Forests), AdaBoost (Adaptive Boosting), and GBDT (Gradient Boosting Decision Tree); the second layer completes classification of crash injury severity based on a Logistic Regression model. A total of 5538 crashes were recorded at 326 freeway diverge areas. In the model calibration, several parameters including the number of trees in three base classification methods, learning rate, and regularization coefficient are optimized via a systematic grid search approach. In the model validation, the performance of the Stacking model is compared with several traditional models including the Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests (RF) in the multi classification experiments. The prediction results show that Stacking model achieves superior performance evaluated by two indicators: accuracy and recall. Furthermore, all the factors used in severity prediction are classified into different categories according to their influence on the results, and sensitivity analysis of several significant factors is finally implemented to explore the impact of their value variation on the prediction accuracy.

摘要

碰撞伤害严重程度分析有助于交通管理机构进一步了解碰撞的严重程度。本研究提出了一种两层堆叠框架来预测碰撞伤害严重程度:第一层集成了三种基础分类方法(随机森林 RF、自适应增强 AdaBoost 和梯度提升决策树 GBDT)的优势;第二层基于逻辑回归模型完成碰撞伤害严重程度的分类。在 326 个高速公路分流区共记录了 5538 起碰撞事故。在模型校准中,通过系统的网格搜索方法优化了几个参数,包括三个基础分类方法中的树的数量、学习率和正则化系数。在模型验证中,堆叠模型的性能在多分类实验中与几种传统模型(支持向量机 SVM、多层感知机 MLP 和随机森林 RF)进行了比较。预测结果表明,堆叠模型在准确性和召回率两个指标上的表现都优于其他模型。此外,根据它们对结果的影响,将用于严重程度预测的所有因素分为不同类别,并对几个重要因素进行敏感性分析,以探讨它们的值变化对预测准确性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验