Neuroscience Institute, New York University Medical Center, 435 E. 30(th) Street, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
Neuroscience Institute, New York University Medical Center, 435 E. 30(th) Street, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
Curr Biol. 2018 Nov 19;28(22):3533-3546.e6. doi: 10.1016/j.cub.2018.09.020. Epub 2018 Nov 1.
A longstanding goal of systems neuroscience is to quantitatively describe how the brain integrates sensory cues over time. Here, we develop a closed-loop orienting paradigm in Drosophila to study the algorithms by which cues from two modalities are integrated during ongoing behavior. We find that flies exhibit two behaviors when presented simultaneously with an attractive visual stripe and aversive wind cue. First, flies perform a turn sequence where they initially turn away from the wind but later turn back toward the stripe, suggesting dynamic sensory processing. Second, turns toward the stripe are slowed by the presence of competing wind, suggesting summation of turning drives. We develop a model in which signals from each modality are filtered in space and time to generate turn commands and then summed to produce ongoing orienting behavior. This computational framework correctly predicts behavioral dynamics for a range of stimulus intensities and spatial arrangements.
系统神经科学的一个长期目标是定量描述大脑如何随时间整合感官线索。在这里,我们在果蝇中开发了一个闭环导向范式,以研究在持续行为过程中两种模式的线索是如何整合的。我们发现,当果蝇同时呈现有吸引力的视觉条纹和厌恶的风向提示时,它们会表现出两种行为。首先,果蝇进行一个转弯序列,它们最初会远离风向,但后来又转回条纹方向,这表明存在动态的感官处理。其次,由于存在竞争的风向,转向条纹的速度会减慢,这表明转向驱动力的叠加。我们开发了一个模型,其中每个模式的信号在空间和时间上进行滤波,以产生转弯命令,然后进行求和,以产生持续的导向行为。该计算框架正确地预测了一系列刺激强度和空间排列的行为动力学。