Suppr超能文献

解析核苷酸分辨率下的 3' 端 RNA 尿嘧啶核苷酸化。

Unraveling 3'-end RNA uridylation at nucleotide resolution.

机构信息

Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Methods. 2019 Feb 15;155:10-19. doi: 10.1016/j.ymeth.2018.10.024. Epub 2018 Nov 3.

Abstract

Post-transcriptional modification of RNA, the so-called 'Epitranscriptome', can regulate RNA structure, stability, localization, and function. Numerous modifications have been identified in virtually all classes of RNAs, including messenger RNAs (mRNAs), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), microRNAs (miRNAs), and other noncoding RNAs (ncRNAs). These modifications may occur internally (by base or sugar modifications) and include RNA methylation at different nucleotide positions, or by the addition of various nucleotides at the 3'-end of certain transcripts by a family of terminal nucleotidylyl transferases. Developing methods to specifically and accurately detect and map these modifications is essential for understanding the molecular function(s) of individual RNA modifications and also for identifying and characterizing the proteins that may read, write, or erase them. Here, we focus on the characterization of RNA species targeted by 3' terminal uridylyl transferases (TUTases) (TUT4/7, also known as Zcchc11/6) and a 3'-5' exoribonuclease, Dis3l2, in the recently identified Dis3l2-mediated decay (DMD) pathway - a dedicated quality control pathway for a subset of ncRNAs. We describe the detailed methods used to precisely identify 3'-end modifications at nucleotide level resolution with a particular focus on the U1 and U2 small nuclear RNA (snRNA) components of the Spliceosome. These tools can be applied to investigate any RNA of interest and should facilitate studies aimed at elucidating the functional relevance of 3'-end modifications.

摘要

RNA 的转录后修饰,即所谓的“转录组修饰”,可以调节 RNA 的结构、稳定性、定位和功能。几乎所有类型的 RNA,包括信使 RNA(mRNA)、转移 RNA(tRNA)、核糖体 RNA(rRNA)、微小 RNA(miRNA)和其他非编码 RNA(ncRNA),都已经鉴定出了许多修饰。这些修饰可以发生在内部(通过碱基或糖修饰),包括在不同核苷酸位置的 RNA 甲基化,或者通过一系列末端核苷酸转移酶在某些转录本的 3'末端添加各种核苷酸。开发特异性和准确检测和绘制这些修饰的方法对于理解单个 RNA 修饰的分子功能以及鉴定和表征可能读取、写入或擦除它们的蛋白质至关重要。在这里,我们重点介绍 3'末端尿苷酰转移酶(TUTase)(TUT4/7,也称为 Zcchc11/6)和 3'-5'外切核酸酶 Dis3l2 靶向的 RNA 物种的特征,这些 RNA 物种在最近发现的 Dis3l2 介导的降解(DMD)途径中,该途径是一组特定的 ncRNA 的专门质量控制途径。我们描述了精确识别核苷酸水平分辨率 3'末端修饰的详细方法,特别关注剪接体中的 U1 和 U2 小核 RNA(snRNA)成分。这些工具可用于研究任何感兴趣的 RNA,并应有助于阐明 3'末端修饰的功能相关性的研究。

相似文献

1
Unraveling 3'-end RNA uridylation at nucleotide resolution.
Methods. 2019 Feb 15;155:10-19. doi: 10.1016/j.ymeth.2018.10.024. Epub 2018 Nov 3.
2
Dis3l2-Mediated Decay Is a Quality Control Pathway for Noncoding RNAs.
Cell Rep. 2016 Aug 16;16(7):1861-73. doi: 10.1016/j.celrep.2016.07.025. Epub 2016 Aug 4.
3
Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs.
Nucleic Acids Res. 2016 Dec 1;44(21):10437-10453. doi: 10.1093/nar/gkw649. Epub 2016 Jul 18.
4
3' RNA Uridylation in Epitranscriptomics, Gene Regulation, and Disease.
Front Mol Biosci. 2018 Jul 13;5:61. doi: 10.3389/fmolb.2018.00061. eCollection 2018.
7
TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs.
EMBO J. 2016 Oct 17;35(20):2179-2191. doi: 10.15252/embj.201694857. Epub 2016 Sep 19.
8
RNA surveillance by uridylation-dependent RNA decay in Schizosaccharomyces pombe.
Nucleic Acids Res. 2019 Apr 8;47(6):3045-3057. doi: 10.1093/nar/gkz043.
9
Uridylation Earmarks mRNAs for Degradation… and More.
Trends Genet. 2016 Oct;32(10):607-619. doi: 10.1016/j.tig.2016.08.003. Epub 2016 Sep 1.
10
Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4).
Nucleic Acids Res. 2014 Oct;42(18):11777-91. doi: 10.1093/nar/gku805. Epub 2014 Sep 15.

引用本文的文献

1
Tailer: a pipeline for sequencing-based analysis of nonpolyadenylated RNA 3' end processing.
RNA. 2022 May;28(5):645-656. doi: 10.1261/rna.079071.121. Epub 2022 Feb 18.
2
Small Non-coding RNA Expression Following Respiratory Syncytial Virus or Measles Virus Infection of Neuronal Cells.
Front Microbiol. 2021 Sep 3;12:671852. doi: 10.3389/fmicb.2021.671852. eCollection 2021.
3
An essential role for the piRNA pathway in regulating the ribosomal RNA pool in C. elegans.
Dev Cell. 2021 Aug 23;56(16):2295-2312.e6. doi: 10.1016/j.devcel.2021.07.014. Epub 2021 Aug 12.
4
Quantitative mapping of the cellular small RNA landscape with AQRNA-seq.
Nat Biotechnol. 2021 Aug;39(8):978-988. doi: 10.1038/s41587-021-00874-y. Epub 2021 Apr 15.
5
RNA Metabolism Guided by RNA Modifications: The Role of SMUG1 in rRNA Quality Control.
Biomolecules. 2021 Jan 8;11(1):76. doi: 10.3390/biom11010076.
6
microRNA strand selection: Unwinding the rules.
Wiley Interdiscip Rev RNA. 2021 May;12(3):e1627. doi: 10.1002/wrna.1627. Epub 2020 Sep 20.

本文引用的文献

1
Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s.
Cell. 2018 Sep 6;174(6):1537-1548.e29. doi: 10.1016/j.cell.2018.07.022. Epub 2018 Aug 16.
2
Epitranscriptomic Code and Its Alterations in Human Disease.
Trends Mol Med. 2018 Oct;24(10):886-903. doi: 10.1016/j.molmed.2018.07.010. Epub 2018 Aug 14.
3
Regulation of cytoplasmic RNA stability: Lessons from Drosophila.
Wiley Interdiscip Rev RNA. 2018 Nov;9(6):e1499. doi: 10.1002/wrna.1499. Epub 2018 Aug 15.
4
Terminal uridylyltransferases target RNA viruses as part of the innate immune system.
Nat Struct Mol Biol. 2018 Sep;25(9):778-786. doi: 10.1038/s41594-018-0106-9. Epub 2018 Aug 13.
5
The Future of Cross-Linking and Immunoprecipitation (CLIP).
Cold Spring Harb Perspect Biol. 2018 Aug 1;10(8):a032243. doi: 10.1101/cshperspect.a032243.
6
3' RNA Uridylation in Epitranscriptomics, Gene Regulation, and Disease.
Front Mol Biosci. 2018 Jul 13;5:61. doi: 10.3389/fmolb.2018.00061. eCollection 2018.
7
Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation.
Science. 2018 Aug 17;361(6403):701-704. doi: 10.1126/science.aam5794. Epub 2018 Jul 19.
8
fCLIP-seq for transcriptomic footprinting of dsRNA-binding proteins: Lessons from DROSHA.
Methods. 2019 Jan 1;152:3-11. doi: 10.1016/j.ymeth.2018.06.004. Epub 2018 Jun 12.
9
Mechanism of N-methyladenosine modification and its emerging role in cancer.
Pharmacol Ther. 2018 Sep;189:173-183. doi: 10.1016/j.pharmthera.2018.04.011. Epub 2018 May 4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验