Suppr超能文献

在文本中检测时间认知:自我、专家和机器判断的比较

Detecting Temporal Cognition in Text: Comparison of Judgements by Self, Expert and Machine.

作者信息

Walsh Erin I, Busby Grant Janie

机构信息

Centre for Research on Ageing, Health & Wellbeing, Australian National University, Canberra, ACT, Australia.

Centre for Applied Psychology, University of Canberra, Canberra, ACT, Australia.

出版信息

Front Psychol. 2018 Oct 26;9:2037. doi: 10.3389/fpsyg.2018.02037. eCollection 2018.

Abstract

There is a growing research focus on temporal cognition, due to its importance in memory and planning, and links with psychological wellbeing. Researchers are increasingly using diary studies, experience sampling and social media data to study temporal thought. However, it remains unclear whether such reports can be accurately interpreted for temporal orientation. In this study, temporal orientation judgements about text reports of thoughts were compared across human coding, automatic text mining, and participant self-report. 214 participants responded to randomly timed text message prompts, categorically reporting the temporal direction of their thoughts and describing the content of their thoughts, producing a corpus of 2505 brief (1-358, = 43 characters) descriptions. Two researchers independently, blindly coded temporal orientation of the descriptions. Four approaches to automated coding used tense to establish temporal category for each description. Concordance between temporal orientation assessments by self-report, human coding, and automatic text mining was evaluated. Human coding more closely matched self-reported coding than automated methods. Accuracy for human (79.93% correct) and automated (57.44% correct) coding was diminished when multiple guesses at ambiguous temporal categories (ties) were allowed in coding (reduction to 74.95% correct for human, 49.05% automated). Ambiguous tense poses a challenge for both human and automated coding protocols that attempt to infer temporal orientation from text describing momentary thought. While methods can be applied to minimize bias, this study demonstrates that researchers need to be wary about attributing temporal orientation to text-reported thought processes, and emphasize the importance of eliciting self-reported judgements.

摘要

由于时间认知在记忆和规划中的重要性以及与心理健康的联系,对其的研究关注度日益增加。研究人员越来越多地使用日记研究、经验抽样和社交媒体数据来研究时间思维。然而,这些报告能否准确地用于解释时间取向仍不清楚。在本研究中,对关于思维文本报告的时间取向判断在人工编码、自动文本挖掘和参与者自我报告之间进行了比较。214名参与者对随机定时的短信提示做出回应,分类报告其思维的时间方向并描述思维内容,生成了一个包含2505条简短(1 - 358个字符,平均43个字符)描述的语料库。两名研究人员独立、盲态地对描述的时间取向进行编码。四种自动编码方法利用时态为每个描述确定时间类别。评估了自我报告、人工编码和自动文本挖掘在时间取向评估之间的一致性。与自动方法相比,人工编码与自我报告编码的匹配度更高。当在编码中允许对模糊的时间类别(平局情况)进行多次猜测时,人工编码(正确率79.93%)和自动编码(正确率57.44%)的准确性均有所下降(人工编码降至74.95%正确,自动编码降至49.05%正确)。模糊的时态对试图从描述瞬间思维的文本中推断时间取向的人工和自动编码协议都构成了挑战。虽然可以应用一些方法来尽量减少偏差,但本研究表明,研究人员在将时间取向归因于文本报告的思维过程时需要谨慎,并强调引出自我报告判断的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6c0/6212561/95a08a48eac3/fpsyg-09-02037-g001.jpg

相似文献

1
Detecting Temporal Cognition in Text: Comparison of Judgements by Self, Expert and Machine.
Front Psychol. 2018 Oct 26;9:2037. doi: 10.3389/fpsyg.2018.02037. eCollection 2018.
2
Manual versus automated coding of free-text self-reported medication data in the 45 and Up Study: a validation study.
Public Health Res Pract. 2015 Mar 30;25(2):e2521518. doi: 10.17061/phrp2521518.
3
Automated Outcome Classification of Computed Tomography Imaging Reports for Pediatric Traumatic Brain Injury.
Acad Emerg Med. 2016 Feb;23(2):171-8. doi: 10.1111/acem.12859. Epub 2016 Jan 14.
4
Automated Classification of Selected Data Elements from Free-text Diagnostic Reports for Clinical Research.
Methods Inf Med. 2016 Aug 5;55(4):373-80. doi: 10.3414/ME15-02-0019. Epub 2016 Jul 13.
6
The use of narrative text for injury surveillance research: a systematic review.
Accid Anal Prev. 2010 Mar;42(2):354-63. doi: 10.1016/j.aap.2009.09.020. Epub 2009 Oct 24.
7
Evaluation of BioCreAtIvE assessment of task 2.
BMC Bioinformatics. 2005;6 Suppl 1(Suppl 1):S16. doi: 10.1186/1471-2105-6-S1-S16. Epub 2005 May 24.
8
Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
J Biomed Inform. 2015 Feb;53:196-207. doi: 10.1016/j.jbi.2014.11.002. Epub 2014 Nov 8.
9
Automatic Coding of Short Text Responses via Clustering in Educational Assessment.
Educ Psychol Meas. 2016 Apr;76(2):280-303. doi: 10.1177/0013164415590022. Epub 2015 Jun 8.

本文引用的文献

1
A big data analysis of the relationship between future thinking and decision-making.
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1740-E1748. doi: 10.1073/pnas.1706589115. Epub 2018 Feb 5.
2
Episodic Future Thinking: Mechanisms and Functions.
Curr Opin Behav Sci. 2017 Oct;17:41-50. doi: 10.1016/j.cobeha.2017.06.002. Epub 2017 Jun 20.
3
Characterizing the role of the hippocampus during episodic simulation and encoding.
Hippocampus. 2017 Dec;27(12):1275-1284. doi: 10.1002/hipo.22796. Epub 2017 Sep 12.
4
Machine Learning, Sentiment Analysis, and Tweets: An Examination of Alzheimer's Disease Stigma on Twitter.
J Gerontol B Psychol Sci Soc Sci. 2017 Sep 1;72(5):742-751. doi: 10.1093/geronb/gbx014.
5
Does goal relevant episodic future thinking amplify the effect on delay discounting?
Conscious Cogn. 2017 May;51:10-16. doi: 10.1016/j.concog.2017.02.014. Epub 2017 Mar 8.
7
Tracking thoughts: Exploring the neural architecture of mental time travel during mind-wandering.
Neuroimage. 2017 Feb 15;147:272-281. doi: 10.1016/j.neuroimage.2016.12.031. Epub 2016 Dec 15.
8
Episodic Future Thinking: Expansion of the Temporal Window in Individuals with Alcohol Dependence.
Alcohol Clin Exp Res. 2016 Jul;40(7):1558-66. doi: 10.1111/acer.13112. Epub 2016 Jun 1.
9
Living in the Past, Present, and Future: Measuring Temporal Orientation With Language.
J Pers. 2017 Apr;85(2):270-280. doi: 10.1111/jopy.12239. Epub 2016 Feb 29.
10
Episodic future thinking reduces eating in a food court.
Eat Behav. 2016 Jan;20:9-13. doi: 10.1016/j.eatbeh.2015.10.002. Epub 2015 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验