Zykov V S
Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
Philos Trans A Math Phys Eng Sci. 2018 Nov 12;376(2135):20170379. doi: 10.1098/rsta.2017.0379.
Spiral waves represent an important example of dissipative structures observed in many distributed systems in chemistry, biology and physics. By definition, excitable media occupy a stationary resting state in the absence of external perturbations. However, a perturbation exceeding a threshold results in the initiation of an excitation wave propagating through the medium. These waves, in contrast to acoustic and optical ones, disappear at the medium's boundary or after a mutual collision, and the medium returns to the resting state. Nevertheless, an initiation of a rotating spiral wave results in a self-sustained activity. Such activity unexpectedly appearing in cardiac or neuronal tissues usually destroys their dynamics which results in life-threatening diseases. In this context, an understanding of possible scenarios of spiral wave initiation is of great theoretical importance with many practical applications.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)'.
螺旋波是在化学、生物学和物理学等许多分布式系统中观察到的耗散结构的一个重要例子。根据定义,可兴奋介质在没有外部扰动的情况下处于静止的静息状态。然而,超过阈值的扰动会导致激发波在介质中传播。与声波和光波不同,这些波在介质边界或相互碰撞后消失,介质恢复到静息状态。然而,旋转螺旋波的产生会导致一种自持活动。这种意外出现在心脏或神经组织中的活动通常会破坏它们的动态,从而导致危及生命的疾病。在这种情况下,理解螺旋波产生的可能情况具有重要的理论意义和许多实际应用。本文是主题为“非平衡态物质中的耗散结构:从化学、光子学和生物学(第二部分)”的一部分。