Suppr超能文献

基于放射组学与卷积神经网络的多参数 MRI 增强病变分类分析。

Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI.

机构信息

From the Departments of Diagnostic and Interventional Radiology (D.T., S.S., H.S., C.K.) and Institute of Imaging and Computer Vision (C.H., D.M.), RWTH Aachen University, Aachen, Pauwelsstr 30, 52074 Aachen, Germany.

出版信息

Radiology. 2019 Feb;290(2):290-297. doi: 10.1148/radiol.2018181352. Epub 2018 Nov 13.

Abstract

Purpose To compare the diagnostic performance of radiomic analysis (RA) and a convolutional neural network (CNN) to radiologists for classification of contrast agent-enhancing lesions as benign or malignant at multiparametric breast MRI. Materials and Methods Between August 2011 and August 2015, 447 patients with 1294 enhancing lesions (787 malignant, 507 benign; median size, 15 mm ± 20) were evaluated. Lesions were manually segmented by one breast radiologist. RA was performed by using L1 regularization and principal component analysis. CNN used a deep residual neural network with 34 layers. All algorithms were also retrained on half the number of lesions (n = 647). Machine interpretations were compared with prospective interpretations by three breast radiologists. Standard of reference was histologic analysis or follow-up. Areas under the receiver operating curve (AUCs) were used to compare diagnostic performance. Results CNN trained on the full cohort was superior to training on the half-size cohort (AUC, 0.88 vs 0.83, respectively; P = .01), but there was no difference for RA and L1 regularization (AUC, 0.81 vs 0.80, respectively; P = .76) or RA and principal component analysis (AUC, 0.78 vs 0.78, respectively; P = .93). By using the full cohort, CNN performance (AUC, 0.88; 95% confidence interval: 0.86, 0.89) was better than RA and L1 regularization (AUC, 0.81; 95% confidence interval: 0.79, 0.83; P < .001) and RA and principal component analysis (AUC, 0.78; 95% confidence interval: 0.76, 0.80; P < .001). However, CNN was inferior to breast radiologist interpretation (AUC, 0.98; 95% confidence interval: 0.96, 0.99; P < .001). Conclusion A convolutional neural network was superior to radiomic analysis for classification of enhancing lesions as benign or malignant at multiparametric breast MRI. Both approaches were inferior to radiologists' performance; however, more training data will further improve performance of convolutional neural network, but not that of radiomics algorithms. © RSNA, 2018 Online supplemental material is available for this article.

摘要

目的 比较放射组学分析(RA)和卷积神经网络(CNN)与放射科医师对多参数乳腺 MRI 增强病变进行良性或恶性分类的诊断性能。

材料与方法 本研究于 2011 年 8 月至 2015 年 8 月期间入组了 447 例患者的 1294 个增强病变(787 个恶性病变,507 个良性病变;病变中位大小为 15 mm±20)。由一名乳腺放射科医师手动对病变进行分割。RA 采用 L1 正则化和主成分分析进行。CNN 使用具有 34 层的深度残差神经网络。所有算法还在病变数量的一半(n=647)上进行了重新训练。机器解读与三位乳腺放射科医师的前瞻性解读进行比较。以组织学分析或随访为标准参考。使用受试者工作特征曲线下面积(AUC)比较诊断性能。

结果 在全队列中训练的 CNN 优于在半大小队列中训练的 CNN(AUC 分别为 0.88 与 0.83,P=0.01),但 RA 和 L1 正则化(AUC 分别为 0.81 与 0.80,P=0.76)或 RA 和主成分分析(AUC 分别为 0.78 与 0.78,P=0.93)之间没有差异。使用全队列时,CNN 性能(AUC,0.88;95%置信区间:0.86,0.89)优于 RA 和 L1 正则化(AUC,0.81;95%置信区间:0.79,0.83;P<0.001)和 RA 和主成分分析(AUC,0.78;95%置信区间:0.76,0.80;P<0.001)。然而,CNN 劣于乳腺放射科医师的解读(AUC,0.98;95%置信区间:0.96,0.99;P<0.001)。

结论 在多参数乳腺 MRI 中,与 RA 相比,CNN 更有助于增强病变的良性或恶性分类。这两种方法均劣于放射科医师的表现;然而,增加更多的训练数据将进一步提高 CNN 的性能,但不会提高 RA 算法的性能。

© 2018 RSNA,在线补充材料可在本文中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验