Suppr超能文献

山柰酚的过氧化物裂解有助于植物中泛醌苯环部分的生物合成。

The Peroxidative Cleavage of Kaempferol Contributes to the Biosynthesis of the Benzenoid Moiety of Ubiquinone in Plants.

机构信息

Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611.

Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611.

出版信息

Plant Cell. 2018 Dec;30(12):2910-2921. doi: 10.1105/tpc.18.00688. Epub 2018 Nov 14.

Abstract

Land plants possess the unique capacity to derive the benzenoid moiety of the vital respiratory cofactor, ubiquinone (coenzyme Q), from phenylpropanoid metabolism via β-oxidation of -coumarate to form 4-hydroxybenzoate. Approximately half of the ubiquinone in plants comes from this pathway; the origin of the rest remains enigmatic. In this study, Phe-[-C] feeding assays and gene network reconstructions uncovered a connection between the biosynthesis of ubiquinone and that of flavonoids in Arabidopsis (). Quantification of ubiquinone in Arabidopsis and tomato () mutants in flavonoid biosynthesis pinpointed the corresponding metabolic branch-point as lying between flavanone-3-hydroxylase and flavonoid-3'-hydroxylase. Further isotopic labeling and chemical rescue experiments demonstrated that the B-ring of kaempferol is incorporated into ubiquinone. Moreover, heme-dependent peroxidase activities were shown to be responsible for the cleavage of B-ring of kaempferol to form 4-hydroxybenzoate. By contrast, kaempferol 3-β-d-glucopyranoside, dihydrokaempferol, and naringenin were refractory to peroxidative cleavage. Collectively, these data indicate that kaempferol contributes to the biosynthesis of a vital respiratory cofactor, resulting in an extraordinary metabolic arrangement where a specialized metabolite serves as a precursor for a primary metabolite. Evidence is also provided that the ubiquinone content of tomato fruits can be manipulated via deregulation of flavonoid biosynthesis.

摘要

陆地植物具有独特的能力,能够通过β-氧化 - 香豆酸来形成 4-羟基苯甲酸,从而从苯丙烷代谢中获得重要呼吸辅因子泛醌(辅酶 Q)的苯环部分。植物中大约一半的泛醌来自这条途径;其余的起源仍然神秘。在这项研究中,通过 Phe-[-C] 喂养实验和基因网络重建,揭示了拟南芥()中泛醌生物合成与类黄酮生物合成之间的联系。对拟南芥和番茄()类黄酮生物合成突变体中泛醌的定量分析,确定了相应的代谢分支点位于黄烷酮-3-羟化酶和黄酮醇-3'-羟化酶之间。进一步的同位素标记和化学拯救实验表明,山柰酚的 B 环被掺入到泛醌中。此外,还表明血红素依赖的过氧化物酶活性负责山柰酚 B 环的裂解,形成 4-羟基苯甲酸。相比之下,山柰酚 3-β-D-葡萄糖苷、二氢山柰酚和柚皮素对过氧化物酶裂解具有抗性。总的来说,这些数据表明山柰酚有助于重要呼吸辅因子的生物合成,导致一种特殊代谢物作为主要代谢物前体的非凡代谢安排。还提供了证据表明,通过调节类黄酮生物合成可以操纵番茄果实中的泛醌含量。

相似文献

1
The Peroxidative Cleavage of Kaempferol Contributes to the Biosynthesis of the Benzenoid Moiety of Ubiquinone in Plants.
Plant Cell. 2018 Dec;30(12):2910-2921. doi: 10.1105/tpc.18.00688. Epub 2018 Nov 14.
3
3-O-glycosylation of kaempferol restricts the supply of the benzenoid precursor of ubiquinone (Coenzyme Q) in Arabidopsis thaliana.
Phytochemistry. 2021 Jun;186:112738. doi: 10.1016/j.phytochem.2021.112738. Epub 2021 Mar 21.
5
The origin and metabolic fate of 4-hydroxybenzoate in Arabidopsis.
Planta. 2024 Nov 19;260(6):144. doi: 10.1007/s00425-024-04572-2.
6
The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in Arabidopsis.
Plant Cell. 2014 May;26(5):1938-1948. doi: 10.1105/tpc.114.125807. Epub 2014 May 16.

引用本文的文献

1
Biosynthesis and Physiological Significance of Organ-Specific Flavonol Glycosides in Solanaceae.
bioRxiv. 2025 Mar 28:2025.03.27.645607. doi: 10.1101/2025.03.27.645607.
2
The origin and metabolic fate of 4-hydroxybenzoate in Arabidopsis.
Planta. 2024 Nov 19;260(6):144. doi: 10.1007/s00425-024-04572-2.
3
Identification of tomato F-box proteins functioning in phenylpropanoid metabolism.
Plant Mol Biol. 2024 Jul 12;114(4):85. doi: 10.1007/s11103-024-01483-4.
7
Characterization of Coq9 in the CoQ Biosynthetic Pathway.
Metabolites. 2023 Jun 30;13(7):813. doi: 10.3390/metabo13070813.
8
; a biotechnological perspective on the coming-of-age prince's pine.
Phytochem Rev. 2023 Jun 8:1-16. doi: 10.1007/s11101-023-09880-1.
10
Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization.
Plants (Basel). 2023 Jan 23;12(3):517. doi: 10.3390/plants12030517.

本文引用的文献

4
Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor.
Free Radic Biol Med. 2017 Sep;110:176-187. doi: 10.1016/j.freeradbiomed.2017.06.006. Epub 2017 Jun 9.
5
Mechanistic Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast.
Cell Chem Biol. 2016 Oct 20;23(10):1241-1250. doi: 10.1016/j.chembiol.2016.08.008. Epub 2016 Sep 29.
8
Four Isoforms of Arabidopsis 4-Coumarate:CoA Ligase Have Overlapping yet Distinct Roles in Phenylpropanoid Metabolism.
Plant Physiol. 2015 Dec;169(4):2409-21. doi: 10.1104/pp.15.00838. Epub 2015 Oct 21.
9
A familiar ring to it: biosynthesis of plant benzoic acids.
Mol Plant. 2015 Jan;8(1):83-97. doi: 10.1016/j.molp.2014.12.001. Epub 2014 Dec 11.
10
The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development.
Plant Physiol. 2014 Oct;166(2):614-31. doi: 10.1104/pp.114.240507. Epub 2014 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验