Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
Present address: Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland.
Science. 2018 Nov 16;362(6416):821-825. doi: 10.1126/science.aar4183. Epub 2018 Nov 15.
Ultrafast nonequilibrium dynamics offer a route to study the microscopic interactions that govern macroscopic behavior. In particular, photoinduced phase transitions (PIPTs) in solids provide a test case for how forces, and the resulting atomic motion along a reaction coordinate, originate from a nonequilibrium population of excited electronic states. Using femtosecond photoemission, we obtain access to the transient electronic structure during an ultrafast PIPT in a model system: indium nanowires on a silicon(111) surface. We uncover a detailed reaction pathway, allowing a direct comparison with the dynamics predicted by ab initio simulations. This further reveals the crucial role played by localized photoholes in shaping the potential energy landscape and enables a combined momentum- and real-space description of PIPTs, including the ultrafast formation of chemical bonds.
超快非平衡动力学为研究控制宏观行为的微观相互作用提供了一条途径。特别是,固体中的光致相变 (PIPT) 为研究力以及沿反应坐标的原子运动如何源自非平衡激发电子态的群体提供了一个实例。使用飞秒光发射,我们获得了模型系统中超快 PIPT 过程中瞬态电子结构的访问权限:在硅 (111) 表面上的铟纳米线。我们揭示了一个详细的反应途径,这使得可以与从头算模拟预测的动力学进行直接比较。这进一步揭示了局部光空穴在塑造势能景观中所起的关键作用,并实现了 PIPT 的动量和实空间的联合描述,包括化学键的超快形成。