Suppr超能文献

基于形状的自动化聚类分析慢性淋巴细胞白血病中的 3D 免疫球蛋白蛋白结构。

Automated shape-based clustering of 3D immunoglobulin protein structures in chronic lymphocytic leukemia.

机构信息

Information Technologies Institute, Centre for Research and Technology Hellas, 6th km Harilaou-Thermi Road, Thessaloniki, Greece.

Institute of Applied Biosciences, Centre for Research and Technology Hellas, 6th km Harilaou-Thermi Road, Thessaloniki, Greece.

出版信息

BMC Bioinformatics. 2018 Nov 20;19(Suppl 14):414. doi: 10.1186/s12859-018-2381-1.

Abstract

BACKGROUND

Although the etiology of chronic lymphocytic leukemia (CLL), the most common type of adult leukemia, is still unclear, strong evidence implicates antigen involvement in disease ontogeny and evolution. Primary and 3D structure analysis has been utilised in order to discover indications of antigenic pressure. The latter has been mostly based on the 3D models of the clonotypic B cell receptor immunoglobulin (BcR IG) amino acid sequences. Therefore, their accuracy is directly dependent on the quality of the model construction algorithms and the specific methods used to compare the ensuing models. Thus far, reliable and robust methods that can group the IG 3D models based on their structural characteristics are missing.

RESULTS

Here we propose a novel method for clustering a set of proteins based on their 3D structure focusing on 3D structures of BcR IG from a large series of patients with CLL. The method combines techniques from the areas of bioinformatics, 3D object recognition and machine learning. The clustering procedure is based on the extraction of 3D descriptors, encoding various properties of the local and global geometrical structure of the proteins. The descriptors are extracted from aligned pairs of proteins. A combination of individual 3D descriptors is also used as an additional method. The comparison of the automatically generated clusters to manual annotation by experts shows an increased accuracy when using the 3D descriptors compared to plain bioinformatics-based comparison. The accuracy is increased even more when using the combination of 3D descriptors.

CONCLUSIONS

The experimental results verify that the use of 3D descriptors commonly used for 3D object recognition can be effectively applied to distinguishing structural differences of proteins. The proposed approach can be applied to provide hints for the existence of structural groups in a large set of unannotated BcR IG protein files in both CLL and, by logical extension, other contexts where it is relevant to characterize BcR IG structural similarity. The method does not present any limitations in application and can be extended to other types of proteins.

摘要

背景

尽管慢性淋巴细胞白血病(CLL)的病因仍然不清楚,这是最常见的成人白血病类型,但强有力的证据表明抗原参与了疾病的发生和演变。为了发现抗原压力的迹象,已经利用了主要和 3D 结构分析。后者主要基于克隆型 B 细胞受体免疫球蛋白(BcR IG)氨基酸序列的 3D 模型。因此,它们的准确性直接取决于模型构建算法的质量和用于比较随后模型的具体方法。到目前为止,还缺乏可以基于结构特征对 IG 3D 模型进行分组的可靠和强大的方法。

结果

在这里,我们提出了一种基于 3D 结构对一组蛋白质进行聚类的新方法,该方法主要基于从大量 CLL 患者中获得的 BcR IG 的 3D 结构。该方法结合了生物信息学、3D 物体识别和机器学习领域的技术。聚类过程基于提取 3D 描述符,这些描述符编码了蛋白质局部和全局几何结构的各种特性。描述符从对齐的蛋白质对中提取。还使用单个 3D 描述符的组合作为附加方法。将自动生成的聚类与专家的手动注释进行比较的结果表明,与基于生物信息学的简单比较相比,使用 3D 描述符可以提高准确性。当使用 3D 描述符的组合时,准确性甚至更高。

结论

实验结果验证了通常用于 3D 物体识别的 3D 描述符的使用可以有效地应用于区分蛋白质的结构差异。所提出的方法可用于在大量未注释的 BcR IG 蛋白质文件中提供结构组存在的提示,这些文件既存在于 CLL 中,也可以通过逻辑扩展应用于其他相关情况下,这些情况下需要描述 BcR IG 结构相似性。该方法在应用中没有任何限制,可以扩展到其他类型的蛋白质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e06d/6245605/4aff7546a25f/12859_2018_2381_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验