The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, 9112102 Jerusalem, Israel.
Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11837-E11846. doi: 10.1073/pnas.1809662115. Epub 2018 Nov 21.
Many neurotoxins inflict pain by targeting receptors expressed on nociceptors, such as the polymodal cationic channel TRPV1. The tarantula double-knot toxin (DkTx) is a peptide with an atypical bivalent structure, providing it with the unique capability to lock TRPV1 in its open state and evoke an irreversible channel activation. Here, we describe a distinct gating mechanism of DkTx-evoked TRPV1 activation. Interestingly, DkTx evokes significantly smaller TRPV1 macroscopic currents than capsaicin, with a significantly lower unitary conductance. Accordingly, while capsaicin evokes aversive behaviors in TRPV1-transgenic , DkTx fails to evoke such response at physiological concentrations. To determine the structural feature(s) responsible for this phenomenon, we engineered and evaluated a series of mutated toxins and TRPV1 channels. We found that elongating the DkTx linker, which connects its two knots, increases channel conductance compared with currents elicited by the native toxin. Importantly, deletion of the TRPV1 pore turret, a stretch of amino acids protruding out of the channel's outer pore region, is sufficient to produce both full conductance and aversive behaviors in response to DkTx. Interestingly, this deletion decreases the capsaicin-evoked channel activation. Taken together with structure modeling analysis, our results demonstrate that the TRPV1 pore turret restricts DkTx-mediated pore opening, probably through steric hindrance, limiting the current size and mitigating the evoked downstream physiological response. Overall, our findings reveal that DkTx and capsaicin elicit distinct TRPV1 gating mechanisms and subsequent pain responses. Our results also indicate that the TRPV1 pore turret regulates the mechanisms of channel gating and permeation.
许多神经毒素通过靶向伤害感受器上表达的受体来造成疼痛,例如多模式阳离子通道 TRPV1。狼蛛双结毒素(DkTx)是一种具有非典型二价结构的肽,使其具有独特的能力将 TRPV1 锁定在开放状态并引发不可逆的通道激活。在这里,我们描述了 DkTx 引发的 TRPV1 激活的一种独特门控机制。有趣的是,与辣椒素相比,DkTx 引发的 TRPV1 宏观电流要小得多,其单位电导也明显较低。因此,虽然辣椒素在 TRPV1 转基因动物中引发厌恶行为,但 DkTx 在生理浓度下不能引发这种反应。为了确定导致这种现象的结构特征,我们设计并评估了一系列突变毒素和 TRPV1 通道。我们发现,延长连接其两个结的 DkTx 接头会增加通道电导,与天然毒素引发的电流相比。重要的是,删除 TRPV1 孔塔台(从通道外孔区域伸出的一段氨基酸)足以产生对 DkTx 的全电导和厌恶反应。有趣的是,这种缺失会降低辣椒素引发的通道激活。与结构建模分析相结合,我们的结果表明,TRPV1 孔塔台限制了 DkTx 介导的孔开口,可能是通过空间位阻,限制了电流大小并减轻了下游引发的生理反应。总的来说,我们的研究结果表明,DkTx 和辣椒素引发了不同的 TRPV1 门控机制和随后的疼痛反应。我们的结果还表明,TRPV1 孔塔台调节通道门控和渗透的机制。