Suppr超能文献

TRPV1 通道穹顶决定了不同的 DkTx 和辣椒素门控。

TRPV1 pore turret dictates distinct DkTx and capsaicin gating.

机构信息

The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, 9112102 Jerusalem, Israel.

Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892.

出版信息

Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11837-E11846. doi: 10.1073/pnas.1809662115. Epub 2018 Nov 21.

Abstract

Many neurotoxins inflict pain by targeting receptors expressed on nociceptors, such as the polymodal cationic channel TRPV1. The tarantula double-knot toxin (DkTx) is a peptide with an atypical bivalent structure, providing it with the unique capability to lock TRPV1 in its open state and evoke an irreversible channel activation. Here, we describe a distinct gating mechanism of DkTx-evoked TRPV1 activation. Interestingly, DkTx evokes significantly smaller TRPV1 macroscopic currents than capsaicin, with a significantly lower unitary conductance. Accordingly, while capsaicin evokes aversive behaviors in TRPV1-transgenic , DkTx fails to evoke such response at physiological concentrations. To determine the structural feature(s) responsible for this phenomenon, we engineered and evaluated a series of mutated toxins and TRPV1 channels. We found that elongating the DkTx linker, which connects its two knots, increases channel conductance compared with currents elicited by the native toxin. Importantly, deletion of the TRPV1 pore turret, a stretch of amino acids protruding out of the channel's outer pore region, is sufficient to produce both full conductance and aversive behaviors in response to DkTx. Interestingly, this deletion decreases the capsaicin-evoked channel activation. Taken together with structure modeling analysis, our results demonstrate that the TRPV1 pore turret restricts DkTx-mediated pore opening, probably through steric hindrance, limiting the current size and mitigating the evoked downstream physiological response. Overall, our findings reveal that DkTx and capsaicin elicit distinct TRPV1 gating mechanisms and subsequent pain responses. Our results also indicate that the TRPV1 pore turret regulates the mechanisms of channel gating and permeation.

摘要

许多神经毒素通过靶向伤害感受器上表达的受体来造成疼痛,例如多模式阳离子通道 TRPV1。狼蛛双结毒素(DkTx)是一种具有非典型二价结构的肽,使其具有独特的能力将 TRPV1 锁定在开放状态并引发不可逆的通道激活。在这里,我们描述了 DkTx 引发的 TRPV1 激活的一种独特门控机制。有趣的是,与辣椒素相比,DkTx 引发的 TRPV1 宏观电流要小得多,其单位电导也明显较低。因此,虽然辣椒素在 TRPV1 转基因动物中引发厌恶行为,但 DkTx 在生理浓度下不能引发这种反应。为了确定导致这种现象的结构特征,我们设计并评估了一系列突变毒素和 TRPV1 通道。我们发现,延长连接其两个结的 DkTx 接头会增加通道电导,与天然毒素引发的电流相比。重要的是,删除 TRPV1 孔塔台(从通道外孔区域伸出的一段氨基酸)足以产生对 DkTx 的全电导和厌恶反应。有趣的是,这种缺失会降低辣椒素引发的通道激活。与结构建模分析相结合,我们的结果表明,TRPV1 孔塔台限制了 DkTx 介导的孔开口,可能是通过空间位阻,限制了电流大小并减轻了下游引发的生理反应。总的来说,我们的研究结果表明,DkTx 和辣椒素引发了不同的 TRPV1 门控机制和随后的疼痛反应。我们的结果还表明,TRPV1 孔塔台调节通道门控和渗透的机制。

相似文献

1
TRPV1 pore turret dictates distinct DkTx and capsaicin gating.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11837-E11846. doi: 10.1073/pnas.1809662115. Epub 2018 Nov 21.
3
High yield production and refolding of the double-knot toxin, an activator of TRPV1 channels.
PLoS One. 2012;7(12):e51516. doi: 10.1371/journal.pone.0051516. Epub 2012 Dec 11.
4
Using C. elegans to Study the Effects of Toxins in Sensory Ion Channels In Vivo.
Methods Mol Biol. 2020;2068:225-238. doi: 10.1007/978-1-4939-9845-6_12.
8
Role of the outer pore domain in transient receptor potential vanilloid 1 dynamic permeability to large cations.
J Biol Chem. 2015 Feb 27;290(9):5707-24. doi: 10.1074/jbc.M114.597435. Epub 2015 Jan 7.
10
The biophysical and molecular basis of TRPV1 proton gating.
EMBO J. 2011 Mar 16;30(6):994-1002. doi: 10.1038/emboj.2011.19. Epub 2011 Feb 1.

引用本文的文献

2
Mechanisms of sensory adaptation and inhibition of the cold and menthol receptor TRPM8.
Sci Adv. 2024 Aug 2;10(31):eadp2211. doi: 10.1126/sciadv.adp2211.
3
Dilation of ion selectivity filters in cation channels.
Trends Biochem Sci. 2024 May;49(5):417-430. doi: 10.1016/j.tibs.2024.02.004. Epub 2024 Mar 20.
4
Permeant cations modulate pore dynamics and gating of TRPV1 ion channels.
J Gen Physiol. 2024 Jan 1;156(1). doi: 10.1085/jgp.202313422. Epub 2023 Dec 6.
5
Structural Basis of the Bivalency of the TRPV1 Agonist DkTx.
Angew Chem Int Ed Engl. 2024 Jan 15;63(3):e202314621. doi: 10.1002/anie.202314621. Epub 2023 Dec 12.
6
Relation between flexibility and intrinsically disorder regions in thermosensitive TRP channels reveal allosteric effects.
Eur Biophys J. 2024 Feb;53(1-2):77-90. doi: 10.1007/s00249-023-01682-9. Epub 2023 Sep 30.
8
Cannabidiol sensitizes TRPV2 channels to activation by 2-APB.
Elife. 2023 May 18;12:e86166. doi: 10.7554/eLife.86166.
10
A molecular perspective on identifying TRPV1 thermosensitive regions and disentangling polymodal activation.
Temperature (Austin). 2021 Oct 26;10(1):67-101. doi: 10.1080/23328940.2021.1983354. eCollection 2023.

本文引用的文献

3
Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1.
Cell Rep. 2017 Nov 7;21(6):1681-1691. doi: 10.1016/j.celrep.2017.10.063.
4
Animal Toxins Providing Insights into TRPV1 Activation Mechanism.
Toxins (Basel). 2017 Oct 16;9(10):326. doi: 10.3390/toxins9100326.
5
Expression and Purification of the Pain Receptor TRPV1 for Spectroscopic Analysis.
Sci Rep. 2017 Aug 29;7(1):9861. doi: 10.1038/s41598-017-10426-7.
6
A bimodal activation mechanism underlies scorpion toxin-induced pain.
Sci Adv. 2017 Aug 2;3(8):e1700810. doi: 10.1126/sciadv.1700810. eCollection 2017 Aug.
7
Protein toxins of the Echis coloratus viper venom directly activate TRPV1.
Biochim Biophys Acta Gen Subj. 2017 Mar;1861(3):615-623. doi: 10.1016/j.bbagen.2017.01.004. Epub 2017 Jan 4.
8
Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.
FASEB J. 2017 Mar;31(3):1238-1247. doi: 10.1096/fj.201601132R. Epub 2016 Dec 16.
10
TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.
Nature. 2016 Jun 16;534(7607):347-51. doi: 10.1038/nature17964. Epub 2016 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验