Suppr超能文献

表面化学对细菌黏附动力学和热力学的影响。

The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion.

机构信息

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, 77843, USA.

Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, 77843, USA.

出版信息

Sci Rep. 2018 Nov 22;8(1):17247. doi: 10.1038/s41598-018-35343-1.

Abstract

This work is concerned with investigating the effect of substrate hydrophobicity and zeta potential on the dynamics and kinetics of the initial stages of bacterial adhesion. For this purpose, bacterial pathogens Staphylococcus aureus and Escherichia coli O157:H7 were inoculated on the substrates coated with thin thiol layers (i.e., 1-octanethiol, 1-decanethiol, 1-octadecanethiol, 16-mercaptohexadecanoic acid, and 2-aminoethanethiol hydrochloride) with varying hydrophobicity and surface potential. The time-resolved adhesion data revealed a transformation from an exponential dependence to a square root dependence on time upon changing the substrate from hydrophobic or hydrophilic with a negative zeta potential value to hydrophilic with a negative zeta potential for both pathogens. The dewetting of extracellular polymeric substances (EPS) produced by E. coli O157:H7 was more noticeable on hydrophobic substrates, compared to that of S. aureus, which is attributed to the more amphiphilic nature of staphylococcal EPS. The interplay between the timescale of EPS dewetting and the inverse of the adhesion rate constant modulated the distribution of E. coli O157:H7 within microcolonies and the resultant microcolonial morphology on hydrophobic substrates. Observed trends in the formation of bacterial monolayers rather than multilayers and microcolonies rather than isolated and evenly spaced bacterial cells could be explained by a colloidal model considering van der Waals and electrostatic double-layer interactions only after introducing the contribution of elastic energy due to adhesion-induced deformations at intercellular and substrate-cell interfaces. The gained knowledge is significant in the context of identifying surfaces with greater risk of bacterial contamination and guiding the development of novel surfaces and coatings with superior bacterial antifouling characteristics.

摘要

这项工作旨在研究基底疏水性和 ζ 电位对细菌黏附初始阶段动力学和动力学的影响。为此,将细菌病原体金黄色葡萄球菌和大肠杆菌 O157:H7 接种在涂有不同疏水性和表面电位的薄硫醇层(即 1-辛硫醇、1-癸硫醇、1-十八硫醇、16-巯基十六烷酸和 2-氨基乙硫醇盐酸盐)的基底上。时间分辨的黏附数据表明,当将基底从疏水性或带负 ζ 电位的亲水性改变为带负 ζ 电位的亲水性时,两种病原体的黏附时间从指数依赖转变为平方根依赖。与金黄色葡萄球菌相比,由大肠杆菌 O157:H7 产生的细胞外聚合物(EPS)的去湿在疏水性基底上更为明显,这归因于葡萄球菌 EPS 的更两亲性。EPS 去湿的时间尺度与黏附速率常数的倒数之间的相互作用调节了大肠杆菌 O157:H7 在微菌落中的分布以及在疏水性基底上形成的微菌落形态。可以通过仅考虑范德华和静电双电层相互作用的胶体模型来解释形成细菌单层而不是多层以及微菌落而不是孤立且均匀间隔的细菌细胞的观察趋势,只有在引入由于细胞间和基底-细胞界面的黏附诱导变形而产生的弹性能的贡献之后。在识别具有更大细菌污染风险的表面并指导具有优异细菌防污特性的新型表面和涂层的开发方面,获得的知识具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验