Suppr超能文献

骨科手术后慢性处方阿片类药物使用的预测因素:临床预测规则的推导

Predictors of chronic prescription opioid use after orthopedic surgery: derivation of a clinical prediction rule.

作者信息

Rhon Daniel I, Snodgrass Suzanne J, Cleland Joshua A, Sissel Charles D, Cook Chad E

机构信息

1Center for the Intrepid, Brooke Army Medical Center, 3551 Roger Brooke Drive, JBSA Fort Sam, Houston, TX 78234 USA.

2Doctoral Program in Physical Therapy, Baylor University, San Antonio, TX USA.

出版信息

Perioper Med (Lond). 2018 Nov 22;7:25. doi: 10.1186/s13741-018-0105-8. eCollection 2018.

Abstract

BACKGROUND

Prescription opioid use at high doses or over extended periods of time is associated with adverse outcomes, including dependency and abuse. The aim of this study was to identify mediating variables that predict chronic opioid use, defined as three or more prescriptions after orthopedic surgery.

METHODS

Individuals were ages between 18 and 50 years and undergoing arthroscopic hip surgery between 2004 and 2013. Two categories of chronic opioid use were calculated based on individuals (1) having three or more unique opioid prescriptions within 2 years and (2) still receiving opioid prescriptions > 1 year after surgery. Univariate elationships were identified for each predictor variable, then significant variables ( > 0.15) were entered into a multivariate logistic regression model to identify the most parsimonious group of predictor variables for each chronic opioid use classification. Likelihood ratios were derived from the most robust groups of variables.

RESULTS

There were 1642 participants (mean age 32.5 years, SD 8.2, 54.1% male). Nine predictor variables met the criteria after bivariate analysis for potential inclusion in each multivariate model. Eight variables: socioeconomic status (from enlisted rank family), prior use of opioid medication, prior use of non-opioid pain medication, high health-seeking behavior before surgery, a preoperative diagnosis of insomnia, mental health disorder, or substance abuse were all predictive of chronic opioid use in the final model (seven variables for three or more opioid prescriptions; four variables for opioid use still at 1 year; all< 0.05). Post-test probability of having three or more opioid prescriptions was 93.7% if five of seven variables were present, and the probability of still using opioids after 1 year was 69.6% if three of four variables were present.

CONCLUSION

A combination of variables significantly predicted chronic opioid use in this cohort. Most of these variables were mediators, indicating that modifying them may be feasible, and the potential focus of interventions to decrease the risk of chronic opioid use, or at minimum better inform opioid prescribing decisions. This clinical prediction rule needs further validation.

摘要

背景

高剂量或长期使用处方阿片类药物会带来不良后果,包括药物依赖和滥用。本研究的目的是确定预测慢性阿片类药物使用的中介变量,慢性阿片类药物使用定义为骨科手术后开具三张或更多张处方。

方法

研究对象年龄在18至50岁之间,于2004年至2013年期间接受关节镜髋关节手术。基于以下两类情况计算慢性阿片类药物使用情况:(1)个体在2年内有三张或更多张不同的阿片类药物处方;(2)术后1年仍在接受阿片类药物处方。确定每个预测变量的单变量关系,然后将显著变量(>0.15)纳入多因素逻辑回归模型,以确定每种慢性阿片类药物使用分类的最简约预测变量组。似然比来自最可靠的变量组。

结果

共有1642名参与者(平均年龄32.5岁,标准差8.2,54.1%为男性)。经过双变量分析,九个预测变量符合纳入每个多因素模型的标准。八个变量:社会经济地位(根据入伍等级家庭)、既往阿片类药物使用情况、既往非阿片类止痛药物使用情况、术前较高的求医行为、术前失眠诊断、精神健康障碍或药物滥用,均在最终模型中预测慢性阿片类药物使用情况(七变量用于三张或更多张阿片类药物处方;四变量用于术后1年仍使用阿片类药物;均<0.05)。如果七个变量中的五个存在,开具三张或更多张阿片类药物处方的检验后概率为93.7%;如果四个变量中的三个存在,术后1年仍使用阿片类药物的概率为69.6%。

结论

一组变量显著预测了该队列中的慢性阿片类药物使用情况。这些变量大多是中介变量,表明对其进行调整可能是可行的,并且是降低慢性阿片类药物使用风险干预措施的潜在重点,或者至少能更好地为阿片类药物处方决策提供信息。这一临床预测规则需要进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc9/6249901/ccbbdf39e046/13741_2018_105_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验