Suppr超能文献

大肿瘤抑制因子 2(LATS2)通过 ASK1 以激酶非依赖的机制激活 JNK。

Large tumor suppressor 2, LATS2, activates JNK in a kinase-independent mechanism through ASK1.

机构信息

Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.

Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA.

出版信息

J Mol Cell Biol. 2018 Dec 1;10(6):549-558. doi: 10.1093/jmcb/mjy061.

Abstract

Apoptosis signal-regulating kinase 1 (ASK1) is an important mediator of the cell stress response pathways. Because of its central role in regulating cell death, the activity of ASK1 is tightly regulated by protein-protein interactions and post-translational modifications. Deregulation of ASK1 activity has been linked to human diseases, such as neurological disorders and cancer. Here we describe the identification and characterization of large tumor suppressor 2 (LATS2) as a novel binding partner for ASK1. LATS2 is a core kinase in the Hippo signaling pathway and is commonly downregulated in cancer. We found that LATS2 interacts with ASK1 and increases ASK1-mediated signaling to promote apoptosis and activate the JNK mitogen-activated protein kinase (MAPK). This change in MAPK signaling is dependent on the catalytic activity of ASK1 but does not require LATS2 kinase activity. This work identifies a novel role for LATS2 as a positive regulator of the ASK1-MKK-JNK signaling pathway and establishes a kinase-independent function of LATS2 that may be part of the intricate regulatory system for cellular response to diverse stress signals.

摘要

凋亡信号调节激酶 1(ASK1)是细胞应激反应途径的重要介质。由于其在调节细胞死亡中的核心作用,ASK1 的活性受到蛋白质-蛋白质相互作用和翻译后修饰的严格调控。ASK1 活性的失调与人类疾病有关,如神经紊乱和癌症。在这里,我们描述了大肿瘤抑制因子 2(LATS2)作为 ASK1 的新型结合伴侣的鉴定和表征。LATS2 是 Hippo 信号通路中的核心激酶,在癌症中通常下调。我们发现 LATS2 与 ASK1 相互作用,并增加 ASK1 介导的信号转导,以促进细胞凋亡并激活 JNK 丝裂原活化蛋白激酶(MAPK)。这种 MAPK 信号的变化依赖于 ASK1 的催化活性,但不需要 LATS2 的激酶活性。这项工作确定了 LATS2 作为 ASK1-MKK-JNK 信号通路的正向调节剂的新作用,并确立了 LATS2 的激酶非依赖性功能,这可能是细胞对各种应激信号做出反应的复杂调节系统的一部分。

相似文献

1
Large tumor suppressor 2, LATS2, activates JNK in a kinase-independent mechanism through ASK1.
J Mol Cell Biol. 2018 Dec 1;10(6):549-558. doi: 10.1093/jmcb/mjy061.
3
Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling.
Adv Biol Regul. 2013 Jan;53(1):135-44. doi: 10.1016/j.jbior.2012.09.006. Epub 2012 Sep 13.
4
Murine protein serine/threonine kinase 38 activates apoptosis signal-regulating kinase 1 via Thr 838 phosphorylation.
J Biol Chem. 2008 Dec 12;283(50):34541-53. doi: 10.1074/jbc.M807219200. Epub 2008 Oct 23.
5
Scaffold Role of DUSP22 in ASK1-MKK7-JNK Signaling Pathway.
PLoS One. 2016 Oct 6;11(10):e0164259. doi: 10.1371/journal.pone.0164259. eCollection 2016.
6
ROCK1 knockdown inhibits non-small-cell lung cancer progression by activating the LATS2-JNK signaling pathway.
Aging (Albany NY). 2020 Jun 17;12(12):12160-12174. doi: 10.18632/aging.103386.
8
G1 to S phase transition protein 1 induces apoptosis signal-regulating kinase 1 activation by dissociating 14-3-3 from ASK1.
Oncogene. 2008 Feb 21;27(9):1297-305. doi: 10.1038/sj.onc.1210740. Epub 2007 Aug 20.
10
Cyclophilin A regulates JNK/p38-MAPK signaling through its physical interaction with ASK1.
Biochem Biophys Res Commun. 2015 Aug 14;464(1):112-7. doi: 10.1016/j.bbrc.2015.06.078. Epub 2015 Jun 19.

引用本文的文献

1
Oxidative Stress Triggers Porcine Ovarian Granulosa Cell Apoptosis Through MAPK Signaling.
Antioxidants (Basel). 2025 Aug 9;14(8):978. doi: 10.3390/antiox14080978.
5
A time-resolved fluorescence resonance energy transfer screening assay for discovery of protein-protein interaction modulators.
STAR Protoc. 2021 Sep 8;2(3):100804. doi: 10.1016/j.xpro.2021.100804. eCollection 2021 Sep 17.
6
Doxycycline Induces Apoptosis of S2 Strain-Infected HMC3 Microglial Cells by Activating Calreticulin-Dependent JNK/p53 Signaling Pathway.
Front Cell Infect Microbiol. 2021 Apr 28;11:640847. doi: 10.3389/fcimb.2021.640847. eCollection 2021.
7
NSD3S stabilizes MYC through hindering its interaction with FBXW7.
J Mol Cell Biol. 2020 Jul 3;12(6):438-447. doi: 10.1093/jmcb/mjz098.

本文引用的文献

1
The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway.
Cell Death Differ. 2017 Sep;24(9):1488-1501. doi: 10.1038/cdd.2017.99. Epub 2017 Jun 23.
3
AKT1, LKB1, and YAP1 Revealed as MYC Interactors with NanoLuc-Based Protein-Fragment Complementation Assay.
Mol Pharmacol. 2017 Apr;91(4):339-347. doi: 10.1124/mol.116.107623. Epub 2017 Jan 13.
4
Characterization of Hippo Pathway Components by Gene Inactivation.
Mol Cell. 2016 Dec 1;64(5):993-1008. doi: 10.1016/j.molcel.2016.10.034.
5
Apoptosis signal-regulating kinase 1 exhibits oncogenic activity in pancreatic cancer.
Oncotarget. 2016 Nov 15;7(46):75155-75164. doi: 10.18632/oncotarget.12090.
6
Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1).
J Biol Chem. 2016 Sep 23;291(39):20753-65. doi: 10.1074/jbc.M116.724310. Epub 2016 Aug 11.
7
Regulation of Hippo signalling by p38 signalling.
J Mol Cell Biol. 2016 Aug;8(4):328-37. doi: 10.1093/jmcb/mjw036. Epub 2016 Jul 11.
9
Down-regulation of LATS2 in non-small cell lung cancer promoted the growth and motility of cancer cells.
Tumour Biol. 2015 Mar;36(3):2049-57. doi: 10.1007/s13277-014-2812-1. Epub 2014 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验