Suppr超能文献

金属离子通过三倍体铁蛋白通道的机制见解。

Mechanistic insights into metal ions transit through threefold ferritin channel.

机构信息

Compunet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, I-16163 Genova, Italy; Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.

Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOMCNR), UOS di Pisa, Area della Ricerca CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy.

出版信息

Biochim Biophys Acta Gen Subj. 2019 Feb;1863(2):472-480. doi: 10.1016/j.bbagen.2018.11.010. Epub 2018 Nov 26.

Abstract

BACKGROUND

The mechanism of how the hydrophilic threefold channel (C3) of ferritin nanocages facilitates diffusion of diverse metal ions into the internal cavity remains poorly explored.

METHODS

Computational modeling and free energy estimations were carried out on R. catesbeiana H´ ferritin. Transit features and associated energetics for Fe, Mg, Zn ions through the C3 channel have been examined.

RESULTS

We highlight that iron conduction requires the involvement of two Fe ions in the channel. In such doubly occupied configuration, as observed in X-ray structures, Fe is displaced from the internal site (stabilized by D127) at lower energetic cost. Moreover, comparison of Fe, Mg and Zn transit features shows that E130 geometric constriction provides not only an electrostatic anchor to the incoming ions but also differentially influence their diffusion kinetics.

CONCLUSIONS

Overall, the study provides insights into Fe entry mechanism and characteristic features of metal-protein interactions that influence the metal ions passage. The dynamics data suggest that E130 may act as a metal selectivity gate. This implicates an ion-specific entry mechanism through the channel with the distinct diffusion kinetics being the discriminating factor.

GENERAL SIGNIFICANCE

Ferritin nanocages not only act as biological iron reservoirs but also have gained importance in material science as template scaffolds for synthesizing metal nanoparticles. This study provides mechanistic understanding on the conduction of different metal ions through the channel.

摘要

背景

铁蛋白纳米笼的亲水三倍通道(C3)如何促进各种金属离子扩散到内部腔室的机制仍未得到充分探索。

方法

对 R. catesbeiana H´ 铁蛋白进行了计算建模和自由能估算。检查了 Fe、Mg、Zn 离子通过 C3 通道的传输特征和相关能量。

结果

我们强调,铁的传导需要通道中两个 Fe 离子的参与。在这种双占据的构型中,如 X 射线结构中观察到的那样,Fe 从内部位置(由 D127 稳定)以较低的能量成本位移。此外,Fe、Mg 和 Zn 传输特征的比较表明,E130 几何限制不仅为进入的离子提供了静电锚点,而且还对其扩散动力学产生了不同的影响。

结论

总体而言,该研究深入了解了 Fe 进入机制和影响金属离子通过的金属-蛋白相互作用的特征。动力学数据表明,E130 可能充当金属选择性门。这意味着通过通道的离子特异性进入机制,不同的扩散动力学是区分因素。

意义

铁蛋白纳米笼不仅作为生物铁储存库,而且在材料科学中作为合成金属纳米粒子的模板支架也变得越来越重要。本研究为不同金属离子通过通道的传导提供了机制理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验