Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia.
The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia.
Glia. 2019 Mar;67(3):525-538. doi: 10.1002/glia.23561. Epub 2018 Dec 2.
The identification of factors that regulate myelination provides important insight into the molecular mechanisms that coordinate nervous system development and myelin regeneration after injury. In this study, we investigated the role of amyloid precursor protein (APP) and its paralogue amyloid precursor-like protein 2 (APLP2) in myelination using APP and APLP2 knockout (KO) mice. Given that BACE1 regulates myelination and myelin sheath thickness in both the peripheral and central nervous systems, we sought to determine if APP and APLP2, as alternate BACE1 substrates, also modulate myelination, and therefore provide a better understanding of the events regulating axonal myelination. In the peripheral nervous system, we identified that adult, but not juvenile KO mice, have lower densities of myelinated axons in their sciatic nerves while in the central nervous system, axons within both the optic nerves and corpus callosum of both KO mice were significantly hypomyelinated compared to wild-type (WT) controls. Biochemical analysis demonstrated significant increases in BACE1 and myelin oligodendrocyte glycoprotein and decreased NRG1 and proteolipid protein levels in both KO brain tissue. The acute cuprizone model of demyelination/remyelination revealed that whereas axons in the corpus callosum of WT and APLP2-KO mice underwent similar degrees of demyelination and subsequent remyelination, the myelinated callosal axons in APP-KO mice were less susceptible to cuprizone-induced demyelination and showed a failure in remyelination after cuprizone withdrawal. These data identified APP and APLP2 as modulators of normal myelination and demyelination/remyelination conditions. Deletion of APP and APLP2 identifies novel interplays between the BACE1 substrates in the regulation of myelination.
鉴定调节髓鞘形成的因素为协调神经系统发育和损伤后髓鞘再生的分子机制提供了重要的见解。在这项研究中,我们使用 APP 和 APLP2 敲除(KO)小鼠研究了淀粉样前体蛋白(APP)及其类似物淀粉样前体样蛋白 2(APLP2)在髓鞘形成中的作用。鉴于 BACE1 调节周围和中枢神经系统的髓鞘形成和髓鞘厚度,我们试图确定 APP 和 APLP2 是否作为 BACE1 的替代底物也调节髓鞘形成,从而更好地了解调节轴突髓鞘形成的事件。在周围神经系统中,我们发现成年 KO 小鼠而非幼年 KO 小鼠坐骨神经中的有髓轴突密度较低,而在中枢神经系统中,KO 小鼠的视神经和胼胝体中的轴突均明显比野生型(WT)对照者的髓鞘形成减少。生化分析表明,KO 脑组织中的 BACE1 和少突胶质细胞髓鞘糖蛋白水平显著增加,而 NRG1 和蛋白脂质蛋白水平显著降低。急性铜缺乏症脱髓鞘/再髓鞘模型表明,WT 和 APLP2-KO 小鼠的胼胝体轴突经历了相似程度的脱髓鞘和随后的再髓鞘化,而 APP-KO 小鼠的髓鞘化胼胝体轴突对铜缺乏症诱导的脱髓鞘的敏感性较低,并且在铜缺乏症停药后再髓鞘化失败。这些数据确定了 APP 和 APLP2 是正常髓鞘形成和脱髓鞘/再髓鞘化条件的调节剂。APP 和 APLP2 的缺失确定了 BACE1 底物在髓鞘形成调节中的新相互作用。