Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy.
Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
DNA Repair (Amst). 2019 Jan;73:129-143. doi: 10.1016/j.dnarep.2018.11.010. Epub 2018 Nov 22.
Loss of telomeres stability is a hallmark of cancer cells. Exposed telomeres are prone to aberrant end-joining reactions leading to chromosomal fusions and translocations. Human telomeres contain repeated TTAGGG elements, in which the 3' exposed strand may adopt a G-quadruplex (G4) structure. The guanine-rich regions of telomeres are hotspots for oxidation forming 8-oxoguanine, a lesion that is handled by the base excision repair (BER) pathway. One key player of this pathway is Ape1, the main human endonuclease processing abasic sites. Recent evidences showed an important role for Ape1 in telomeric physiology, but the molecular details regulating Ape1 enzymatic activities on G4-telomeric sequences are lacking. Through a combination of in vitro assays, we demonstrate that Ape1 can bind and process different G4 structures and that this interaction involves specific acetylatable lysine residues (i.e. K) present in the unstructured N-terminal sequence of the protein. The cleavage of an abasic site located in a G4 structure by Ape1 depends on the DNA conformation or the position of the lesion and on electrostatic interactions between the protein and the nucleic acids. Moreover, Ape1 mutants mimicking the acetylated protein display increased cleavage activity for abasic sites. We found that nucleophosmin (NPM1), which binds the N-terminal sequence of Ape1, plays a role in modulating telomere length and Ape1 activity at abasic G4 structures. Thus, the Ape1 N-terminal sequence is an important relay site for regulating the enzyme's activity on G4-telomeric sequences, and specific acetylatable lysine residues constitute key regulatory sites of Ape1 enzymatic activity dynamics at telomeres.
端粒稳定性的丧失是癌细胞的一个标志。暴露的端粒容易发生异常的末端连接反应,导致染色体融合和易位。人类端粒含有重复的 TTAGGG 元件,其中 3'暴露的链可能采用 G-四链体 (G4) 结构。端粒的鸟嘌呤丰富区域是氧化形成 8-氧鸟嘌呤的热点,这种损伤由碱基切除修复 (BER) 途径处理。该途径的一个关键参与者是 Ape1,它是主要的人类内切核酸酶,用于处理碱基缺失。最近的证据表明 Ape1 在端粒生理学中起着重要作用,但调节 Ape1 在 G4-端粒序列上的酶活性的分子细节尚不清楚。通过体外测定的组合,我们证明 Ape1 可以结合和处理不同的 G4 结构,并且这种相互作用涉及蛋白质未折叠 N 端序列中存在的特定乙酰化赖氨酸残基 (即 K)。Ape1 在 G4 结构中切割碱基缺失位点取决于 DNA 构象或损伤的位置,以及蛋白质和核酸之间的静电相互作用。此外,模拟乙酰化蛋白的 Ape1 突变体显示出对碱基缺失位点的增加的切割活性。我们发现,与 Ape1 的 N 端序列结合的核仁磷酸蛋白 (NPM1) 在调节碱基缺失 G4 结构中端粒长度和 Ape1 活性方面发挥作用。因此,Ape1 的 N 端序列是调节酶在 G4-端粒序列上活性的重要中继位点,并且特定的乙酰化赖氨酸残基构成了 Ape1 在端粒上酶活性动力学的关键调节位点。