Suppr超能文献

自适应粒子表示的荧光显微镜图像。

Adaptive particle representation of fluorescence microscopy images.

机构信息

Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden, 01069, Dresden, Germany.

Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.

出版信息

Nat Commun. 2018 Dec 4;9(1):5160. doi: 10.1038/s41467-018-07390-9.

Abstract

Modern microscopes create a data deluge with gigabytes of data generated each second, and terabytes per day. Storing and processing this data is a severe bottleneck, not fully alleviated by data compression. We argue that this is because images are processed as grids of pixels. To address this, we propose a content-adaptive representation of fluorescence microscopy images, the Adaptive Particle Representation (APR). The APR replaces pixels with particles positioned according to image content. The APR overcomes storage bottlenecks, as data compression does, but additionally overcomes memory and processing bottlenecks. Using noisy 3D images, we show that the APR adaptively represents the content of an image while maintaining image quality and that it enables orders of magnitude benefits across a range of image processing tasks. The APR provides a simple and efficient content-aware representation of fluosrescence microscopy images.

摘要

现代显微镜每秒产生数千兆字节的数据,每天产生数太字节的数据,这形成了数据洪流。存储和处理这些数据是一个严重的瓶颈,即使通过数据压缩也不能完全缓解。我们认为,这是因为图像是作为像素网格进行处理的。为了解决这个问题,我们提出了一种荧光显微镜图像的自适应表示方法,即自适应粒子表示法(APR)。APR 用根据图像内容定位的粒子替代像素。APR 像数据压缩一样克服了存储瓶颈,但除此之外还克服了内存和处理瓶颈。使用有噪声的 3D 图像,我们表明 APR 自适应地表示图像的内容,同时保持图像质量,并且它在一系列图像处理任务中提供了数量级的优势。APR 为荧光显微镜图像提供了一种简单高效的基于内容的表示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d4/6279843/b4057a266f0e/41467_2018_7390_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验