Suppr超能文献

先进III-V族量子纳米线网络分子束外延的选择性图谱

Selectivity Map for Molecular Beam Epitaxy of Advanced III-V Quantum Nanowire Networks.

作者信息

Aseev Pavel, Fursina Alexandra, Boekhout Frenk, Krizek Filip, Sestoft Joachim E, Borsoi Francesco, Heedt Sebastian, Wang Guanzhong, Binci Luca, Martí-Sánchez Sara, Swoboda Timm, Koops René, Uccelli Emanuele, Arbiol Jordi, Krogstrup Peter, Kouwenhoven Leo P, Caroff Philippe

机构信息

QuTech and Kavli Institute of NanoScience , Delft University of Technology , Lorentzweg 1 , 2600 GA Delft , The Netherlands.

Microsoft Station Q at Delft University of Technology , 2600 GA Delft , Netherlands.

出版信息

Nano Lett. 2019 Jan 9;19(1):218-227. doi: 10.1021/acs.nanolett.8b03733. Epub 2018 Dec 19.

Abstract

Selective-area growth is a promising technique for enabling of the fabrication of the scalable III-V nanowire networks required to test proposals for Majorana-based quantum computing devices. However, the contours of the growth parameter window resulting in selective growth remain undefined. Herein, we present a set of experimental techniques that unambiguously establish the parameter space window resulting in selective III-V nanowire networks growth by molecular beam epitaxy. Selectivity maps are constructed for both GaAs and InAs compounds based on in situ characterization of growth kinetics on GaAs(001) substrates, where the difference in group III adatom desorption rates between the III-V surface and the amorphous mask area is identified as the primary mechanism governing selectivity. The broad applicability of this method is demonstrated by the successful realization of high-quality InAs and GaAs nanowire networks on GaAs, InP, and InAs substrates of both (001) and (111)B orientations as well as homoepitaxial InSb nanowire networks. Finally, phase coherence in Aharonov-Bohm ring experiments validates the potential of these crystals for nanoelectronics and quantum transport applications. This work should enable faster and better nanoscale crystal engineering over a range of compound semiconductors for improved device performance.

摘要

选择性区域生长是一种很有前景的技术,可用于制造可扩展的III-V族纳米线网络,以测试基于马约拉纳费米子的量子计算设备的相关方案。然而,导致选择性生长的生长参数窗口的轮廓仍不明确。在此,我们展示了一组实验技术,这些技术明确地确定了通过分子束外延实现选择性III-V族纳米线网络生长的参数空间窗口。基于对GaAs(001)衬底上生长动力学的原位表征,构建了GaAs和InAs化合物的选择性图,其中III-V族表面与非晶掩膜区域之间III族吸附原子解吸速率的差异被确定为控制选择性的主要机制。通过在(001)和(111)B取向的GaAs、InP和InAs衬底上成功实现高质量的InAs和GaAs纳米线网络以及同质外延InSb纳米线网络,证明了该方法的广泛适用性。最后,阿哈罗诺夫-玻姆环实验中的相位相干性验证了这些晶体在纳米电子学和量子输运应用中的潜力。这项工作应该能够在一系列化合物半导体上实现更快、更好的纳米级晶体工程,以提高器件性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aaa/6331184/9a12f76e1297/nl-2018-03733p_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验