Suppr超能文献

功能和能量消耗限制了经典计算中的神经元生物物理学: 符合检测。

Function and energy consumption constrain neuronal biophysics in a canonical computation: Coincidence detection.

机构信息

Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.

Center for Neural Science, New York University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2018 Dec 6;14(12):e1006612. doi: 10.1371/journal.pcbi.1006612. eCollection 2018 Dec.

Abstract

Neural morphology and membrane properties vary greatly between cell types in the nervous system. The computations and local circuit connectivity that neurons support are thought to be the key factors constraining the cells' biophysical properties. Nevertheless, additional constraints can be expected to further shape neuronal design. Here, we focus on a particularly energy-intense system (as indicated by metabolic markers): principal neurons in the medial superior olive (MSO) nucleus of the auditory brainstem. Based on a modeling approach, we show that a trade-off between the level of performance of a functionally relevant computation and energy consumption predicts optimal ranges for cell morphology and membrane properties. The biophysical parameters appear most strongly constrained by functional needs, while energy use is minimized as long as function can be maintained. The key factors that determine model performance and energy consumption are 1) the saturation of the synaptic conductance input and 2) the temporal resolution of the postsynaptic signals as they reach the soma, which is largely determined by active membrane properties. MSO cells seem to operate close to pareto optimality, i.e., the trade-off boundary between performance and energy consumption that is formed by the set of optimal models. Good performance for drastically lower costs could in theory be achieved by small neurons without dendrites, as seen in the avian auditory system, pointing to additional constraints for mammalian MSO cells, including their circuit connectivity.

摘要

神经系统中不同细胞类型的神经形态和膜特性差异很大。神经元所支持的计算和局部回路连接被认为是限制细胞生物物理特性的关键因素。然而,预计还会有其他限制因素进一步塑造神经元的设计。在这里,我们专注于一个特别耗能的系统(如代谢标志物所示):听觉脑干中内侧上橄榄核(MSO)的主要神经元。基于建模方法,我们表明,与功能相关计算的性能水平和能量消耗之间的权衡,预测了细胞形态和膜特性的最佳范围。生物物理参数似乎受到功能需求的强烈限制,而只要能够维持功能,能量消耗就会最小化。决定模型性能和能量消耗的关键因素是 1)突触电导输入的饱和,以及 2)到达胞体的突触后信号的时间分辨率,这主要由活性膜特性决定。MSO 细胞似乎接近帕累托最优,即由最优模型集形成的性能和能量消耗之间的权衡边界。在理论上,具有无树突的小神经元可以以更低的成本实现良好的性能,这在鸟类听觉系统中可以看到,这表明哺乳动物 MSO 细胞存在额外的限制因素,包括它们的回路连接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e0a/6312336/07095caf5e26/pcbi.1006612.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验