Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
Neuron. 2018 Dec 5;100(5):1028-1043. doi: 10.1016/j.neuron.2018.10.032.
Understanding how cortical activity generates sensory perceptions requires a detailed dissection of the function of cortical layers. Despite our relatively extensive knowledge of their anatomy and wiring, we have a limited grasp of what each layer contributes to cortical computation. We need to develop a theory of cortical function that is rooted solidly in each layer's component cell types and fine circuit architecture and produces predictions that can be validated by specific perturbations. Here we briefly review the progress toward such a theory and suggest an experimental road map toward this goal. We discuss new methods for the all-optical interrogation of cortical layers, for correlating in vivo function with precise identification of transcriptional cell type, and for mapping local and long-range activity in vivo with synaptic resolution. The new technologies that can crack the function of cortical layers are finally on the immediate horizon.
理解皮质活动如何产生感觉知觉需要对皮质层的功能进行详细剖析。尽管我们对它们的解剖结构和布线有相对广泛的了解,但我们对每个层对皮质计算的贡献知之甚少。我们需要建立一种皮质功能理论,该理论根植于每个层的组成细胞类型和精细的电路结构,并产生可通过特定干扰进行验证的预测。在这里,我们简要回顾了朝着这一理论取得的进展,并提出了实现这一目标的实验路线图。我们讨论了用于皮质层的全光学询问的新方法,用于将体内功能与转录细胞类型的精确识别相关联的方法,以及用于以突触分辨率在体内映射局部和远程活动的方法。破解皮质层功能的新技术终于近在咫尺。