Suppr超能文献

一种设计肽的所有 l-和 d-氨基酸对映异构体的自组装动力学和抗菌活性。

Self-assembly dynamics and antimicrobial activity of all l- and d-amino acid enantiomers of a designer peptide.

机构信息

MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

Nanoscale. 2018 Dec 20;11(1):266-275. doi: 10.1039/c8nr07334a.

Abstract

Recent studies have shown that antimicrobial peptides (AMPs) can self-assemble into supramolecular structures, but this has been overlooked as causative of their antimicrobial activity. Also, the higher antimicrobial potency of d-enantiomers compared to l-enantiomers of AMPs cannot always be attributed to their different resistance to protease degradation. Here, we tested all l- and d-amino acid versions of GL13K, an AMP derived from a human protein, to study structural links between the AMP secondary structure, supramolecular self-assembly dynamics, and antimicrobial activity. pH dependence and the evolution of secondary structures were related to a self-assembly process with differences among these AMPs. The two GL13K enantiomers formed analogous self-assembled twisted nanoribbon structures, but d-GL13K initiated self-assembly faster and had notably higher antimicrobial potency than l-GL13K. A non-antimicrobial scrambled amino acid version of l-GL13K assembled at a much higher pH to form distinctively different self-assembled structures than l-GL13K. Our results support a functional relationship between the AMP self-assembly and their antimicrobial activity.

摘要

最近的研究表明,抗菌肽(AMPs)可以自组装成超分子结构,但这一点被忽视了,因为它是 AMP 抗菌活性的原因。此外,与 AMP 的 l-对映体相比,d-对映体的更高抗菌效力并不总是归因于它们对蛋白酶降解的不同抗性。在这里,我们测试了源自人类蛋白的 AMP GL13K 的所有 l-和 d-氨基酸版本,以研究 AMP 二级结构、超分子自组装动力学和抗菌活性之间的结构联系。pH 依赖性和二级结构的演变与自组装过程有关,这些 AMP 之间存在差异。两种 GL13K 对映体形成类似的自组装扭曲纳米带结构,但 d-GL13K 更快地引发自组装,并且抗菌效力明显高于 l-GL13K。l-GL13K 的非抗菌 scrambled 氨基酸版本在更高的 pH 值下组装,形成与 l-GL13K 明显不同的自组装结构。我们的结果支持 AMP 自组装与其抗菌活性之间的功能关系。

相似文献

4
Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K.
Biochim Biophys Acta. 2013 Sep;1828(9):2193-203. doi: 10.1016/j.bbamem.2013.05.027. Epub 2013 Jun 5.
5
From a marine neuropeptide to antimicrobial pseudopeptides containing aza-β(3)-amino acids: structure and activity.
J Med Chem. 2012 Mar 8;55(5):2025-34. doi: 10.1021/jm2011595. Epub 2012 Feb 22.
7
Conformation Dependent Architectures of Assembled Antimicrobial Peptides with Enhanced Antimicrobial Ability.
Adv Healthc Mater. 2023 Nov;12(29):e2301688. doi: 10.1002/adhm.202301688. Epub 2023 Aug 13.
8
Interfacial Self-Assembly of Antimicrobial Peptide GL13K into Non-Fibril Crystalline β-Sheets.
Langmuir. 2020 Jan 21;36(2):660-665. doi: 10.1021/acs.langmuir.9b03120. Epub 2020 Jan 6.
9
Interpenetrating nanofibrillar membrane of self-assembled collagen and antimicrobial peptides for enhanced bone regeneration.
Int J Biol Macromol. 2024 May;267(Pt 1):131480. doi: 10.1016/j.ijbiomac.2024.131480. Epub 2024 Apr 8.

引用本文的文献

2
Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70003. doi: 10.1002/wnan.70003.
3
An introduction to antibacterial materials in composite restorations.
JADA Found Sci. 2024;3. doi: 10.1016/j.jfscie.2024.100038. Epub 2024 Oct 28.
4
The oral pathogen Porphyromonas gingivalis gains tolerance to the antimicrobial peptide DGL13K by synonymous mutations in hagA.
PLoS One. 2024 Oct 24;19(10):e0312200. doi: 10.1371/journal.pone.0312200. eCollection 2024.
6
Chirality and pH Influence the Self-Assembly of Antimicrobial Lipopeptides with Diverse Nanostructures.
ACS Appl Bio Mater. 2024 Aug 19;7(8):5553-5565. doi: 10.1021/acsabm.4c00664. Epub 2024 Jul 23.
7
Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides.
Curr Pharm Biotechnol. 2024;25(8):1041-1057. doi: 10.2174/0113892010194428231017051836.
8
Design methods for antimicrobial peptides with improved performance.
Zool Res. 2023 Nov 18;44(6):1095-1114. doi: 10.24272/j.issn.2095-8137.2023.246.
9
Chemoselective Coatings of GL13K Antimicrobial Peptides for Dental Implants.
Pharmaceutics. 2023 Oct 4;15(10):2418. doi: 10.3390/pharmaceutics15102418.
10
Stapled β-Hairpin Antimicrobial Peptides with Improved Stability and Activity against Drug-Resistant Gram-Negative Bacteria.
J Med Chem. 2023 Jul 13;66(13):8498-8509. doi: 10.1021/acs.jmedchem.3c00140. Epub 2023 Jun 25.

本文引用的文献

1
Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
Acta Biomater. 2018 Sep 1;77:96-105. doi: 10.1016/j.actbio.2018.07.033. Epub 2018 Jul 19.
2
Fabrication and Microscopic and Spectroscopic Characterization of Cytocompatible Self-Assembling Antimicrobial Nanofibers.
ACS Infect Dis. 2018 Sep 14;4(9):1327-1335. doi: 10.1021/acsinfecdis.8b00069. Epub 2018 Jul 9.
3
Arginine-Containing Surfactant-Like Peptides: Interaction with Lipid Membranes and Antimicrobial Activity.
Biomacromolecules. 2018 Jul 9;19(7):2782-2794. doi: 10.1021/acs.biomac.8b00391. Epub 2018 May 16.
5
Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.
Nat Commun. 2017 Nov 8;8(1):1365. doi: 10.1038/s41467-017-01447-x.
6
Multivalent Presentation of Cationic Peptides on Supramolecular Nanofibers for Antimicrobial Activity.
Mol Pharm. 2017 Nov 6;14(11):3660-3668. doi: 10.1021/acs.molpharmaceut.7b00434. Epub 2017 Oct 19.
7
Solution and Solid-State Nuclear Magnetic Resonance Structural Investigations of the Antimicrobial Designer Peptide GL13K in Membranes.
Biochemistry. 2017 Aug 15;56(32):4269-4278. doi: 10.1021/acs.biochem.7b00526. Epub 2017 Aug 1.
8
9
10
The Amyloid Fibril-Forming Properties of the Amphibian Antimicrobial Peptide Uperin 3.5.
Chembiochem. 2016 Feb 2;17(3):239-46. doi: 10.1002/cbic.201500518. Epub 2015 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验