Department of Psychiatry, Yale School of Medicine, 300 George Street, 950 Campbell Ave, West Haven, New Haven, CT, 06511, USA.
VA Connecticut Healthcare System, 950 Campbell Ave, West Haven, CT, 06516, USA.
Clin Epigenetics. 2018 Dec 13;10(1):155. doi: 10.1186/s13148-018-0591-z.
The effects of tobacco smoking on epigenome-wide methylation signatures in white blood cells (WBCs) collected from persons living with HIV may have important implications for their immune-related outcomes, including frailty and mortality. The application of a machine learning approach to the analysis of CpG methylation in the epigenome enables the selection of phenotypically relevant features from high-dimensional data. Using this approach, we now report that a set of smoking-associated DNA-methylated CpGs predicts HIV prognosis and mortality in an HIV-positive veteran population.
We first identified 137 epigenome-wide significant CpGs for smoking in WBCs from 1137 HIV-positive individuals (p < 1.70E-07). To examine whether smoking-associated CpGs were predictive of HIV frailty and mortality, we applied ensemble-based machine learning to build a model in a training sample employing 408,583 CpGs. A set of 698 CpGs was selected and predictive of high HIV frailty in a testing sample [(area under curve (AUC) = 0.73, 95%CI 0.630.83)] and was replicated in an independent sample [(AUC = 0.78, 95%CI 0.730.83)]. We further found an association of a DNA methylation index constructed from the 698 CpGs that were associated with a 5-year survival rate [HR = 1.46; 95%CI 1.06~2.02, p = 0.02]. Interestingly, the 698 CpGs located on 445 genes were enriched on the integrin signaling pathway (p = 9.55E-05, false discovery rate = 0.036), which is responsible for the regulation of the cell cycle, differentiation, and adhesion.
We demonstrated that smoking-associated DNA methylation features in white blood cells predict HIV infection-related clinical outcomes in a population living with HIV.
在 HIV 感染者的白细胞(WBC)中,吸烟对表观基因组范围内的甲基化特征的影响可能对其与免疫相关的结果有重要影响,包括虚弱和死亡。机器学习方法在表观基因组中 CpG 甲基化分析中的应用能够从高维数据中选择表型相关的特征。使用这种方法,我们现在报告了一组与吸烟相关的 DNA 甲基化 CpG 可预测 HIV 阳性退伍军人人群的 HIV 预后和死亡率。
我们首先在 1137 名 HIV 阳性个体的 WBC 中鉴定出 137 个与吸烟相关的全基因组显著 CpG(p < 1.70E-07)。为了研究吸烟相关的 CpG 是否可预测 HIV 虚弱和死亡率,我们在训练样本中应用基于集成的机器学习方法,利用 408583 个 CpG 构建模型。选择了一组 698 个 CpG,可预测测试样本中 HIV 虚弱的高风险(曲线下面积(AUC)= 0.73,95%CI 0.630.83),并在独立样本中得到验证(AUC = 0.78,95%CI 0.730.83)。我们进一步发现,由与 5 年生存率相关的 698 个 CpG 构建的 DNA 甲基化指数与 5 年生存率相关[HR = 1.46;95%CI 1.06~2.02,p = 0.02]。有趣的是,位于 445 个基因上的 698 个 CpG 富集在整合素信号通路(p = 9.55E-05,错误发现率 = 0.036)上,该通路负责调节细胞周期、分化和黏附。
我们证明了白细胞中与吸烟相关的 DNA 甲基化特征可预测 HIV 感染者的 HIV 感染相关临床结局。