Suppr超能文献

深度学习可实现荧光显微镜的跨模态超分辨率。

Deep learning enables cross-modality super-resolution in fluorescence microscopy.

机构信息

Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.

Bioengineering Department, University of California, Los Angeles, CA, USA.

出版信息

Nat Methods. 2019 Jan;16(1):103-110. doi: 10.1038/s41592-018-0239-0. Epub 2018 Dec 17.

Abstract

We present deep-learning-enabled super-resolution across different fluorescence microscopy modalities. This data-driven approach does not require numerical modeling of the imaging process or the estimation of a point-spread-function, and is based on training a generative adversarial network (GAN) to transform diffraction-limited input images into super-resolved ones. Using this framework, we improve the resolution of wide-field images acquired with low-numerical-aperture objectives, matching the resolution that is acquired using high-numerical-aperture objectives. We also demonstrate cross-modality super-resolution, transforming confocal microscopy images to match the resolution acquired with a stimulated emission depletion (STED) microscope. We further demonstrate that total internal reflection fluorescence (TIRF) microscopy images of subcellular structures within cells and tissues can be transformed to match the results obtained with a TIRF-based structured illumination microscope. The deep network rapidly outputs these super-resolved images, without any iterations or parameter search, and could serve to democratize super-resolution imaging.

摘要

我们提出了一种基于深度学习的跨不同荧光显微镜模式的超分辨率方法。这种数据驱动的方法不需要对成像过程进行数值建模或估计点扩散函数,而是基于训练生成对抗网络 (GAN) 将衍射受限的输入图像转换为超分辨率图像。使用这个框架,我们提高了使用低数值孔径物镜采集的宽场图像的分辨率,达到了使用高数值孔径物镜采集的分辨率。我们还展示了跨模态超分辨率,将共聚焦显微镜图像转换为与受激发射损耗 (STED) 显微镜采集的分辨率匹配。我们进一步证明,可以将细胞和组织内亚细胞结构的全内反射荧光 (TIRF) 显微镜图像转换为与基于 TIRF 的结构光照亮显微镜获得的结果相匹配。深度网络可以快速输出这些超分辨率图像,无需任何迭代或参数搜索,这可能有助于普及超分辨率成像。

相似文献

1
Deep learning enables cross-modality super-resolution in fluorescence microscopy.
Nat Methods. 2019 Jan;16(1):103-110. doi: 10.1038/s41592-018-0239-0. Epub 2018 Dec 17.
3
Recent advances in super-resolution fluorescence imaging and its applications in biology.
J Genet Genomics. 2013 Dec 20;40(12):583-95. doi: 10.1016/j.jgg.2013.11.003. Epub 2013 Nov 23.
4
Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy.
Nat Commun. 2024 May 16;15(1):4180. doi: 10.1038/s41467-024-48575-9.
5
Deep Learning-Enabled Resolution-Enhancement in Mini- and Regular Microscopy for Biomedical Imaging.
Sens Actuators A Phys. 2021 Nov 1;331. doi: 10.1016/j.sna.2021.112928. Epub 2021 Jun 18.
7
Improving axial resolution in Structured Illumination Microscopy using deep learning.
Philos Trans A Math Phys Eng Sci. 2021 Jun 14;379(2199):20200298. doi: 10.1098/rsta.2020.0298. Epub 2021 Apr 26.
8
Parameter-free image resolution estimation based on decorrelation analysis.
Nat Methods. 2019 Sep;16(9):918-924. doi: 10.1038/s41592-019-0515-7. Epub 2019 Aug 26.
9
Deep learning-based super-resolution in coherent imaging systems.
Sci Rep. 2019 Mar 8;9(1):3926. doi: 10.1038/s41598-019-40554-1.

引用本文的文献

1
Deep learning in chromatin organization: from super-resolution microscopy to clinical applications.
Cell Mol Life Sci. 2025 Aug 29;82(1):323. doi: 10.1007/s00018-025-05837-z.
2
Advancing cell therapies with artificial intelligence and synthetic biology.
Curr Opin Biomed Eng. 2025 Jun;34. doi: 10.1016/j.cobme.2025.100580. Epub 2025 Feb 3.
3
Virtual staining of label-free tissue in imaging mass spectrometry.
Sci Adv. 2025 Aug;11(31):eadv0741. doi: 10.1126/sciadv.adv0741. Epub 2025 Aug 1.
4
Cellular optical imaging techniques: a dynamic advancing frontier.
Sci China Life Sci. 2025 Jul 16. doi: 10.1007/s11427-024-2916-5.
5
AI-based virtual immunocytochemistry for rapid and robust fine needle aspiration biopsy diagnosis.
Diagn Pathol. 2025 Jul 17;20(1):86. doi: 10.1186/s13000-025-01687-2.
7
From Neural Networks to Transformers: Achieving High and Fast Precision in Fluorescence Correlation Spectroscopy Analysis.
ACS Omega. 2025 Jun 5;10(23):25091-25101. doi: 10.1021/acsomega.5c03605. eCollection 2025 Jun 17.
10
Universal point spread function engineering for 3D optical information processing.
Light Sci Appl. 2025 Jun 12;14(1):212. doi: 10.1038/s41377-025-01887-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验