Suppr超能文献

使用优势比来检测项目功能差异

Using Odds Ratios to Detect Differential Item Functioning.

作者信息

Jin Kuan-Yu, Chen Hui-Fang, Wang Wen-Chung

机构信息

The University of Hong Kong, Pokfulam, Hong Kong.

City University of Hong Kong, Kowloon, Hong Kong.

出版信息

Appl Psychol Meas. 2018 Nov;42(8):613-629. doi: 10.1177/0146621618762738. Epub 2018 Mar 21.

Abstract

Differential item functioning (DIF) makes test scores incomparable and substantially threatens test validity. Although conventional approaches, such as the logistic regression (LR) and the Mantel-Haenszel (MH) methods, have worked well, they are vulnerable to high percentages of DIF items in a test and missing data. This study developed a simple but effective method to detect DIF using the odds ratio (OR) of two groups' responses to a studied item. The OR method uses all available information from examinees' responses, and it can eliminate the potential influence of bias in the total scores. Through a series of simulation studies in which the DIF pattern, impact, sample size (equal/unequal), purification procedure (with/without), percentages of DIF items, and proportions of missing data were manipulated, the performance of the OR method was evaluated and compared with the LR and MH methods. The results showed that the OR method without a purification procedure outperformed the LR and MH methods in controlling false positive rates and yielding high true positive rates when tests had a high percentage of DIF items favoring the same group. In addition, only the OR method was feasible when tests adopted the item matrix sampling design. The effectiveness of the OR method with an empirical example was illustrated.

摘要

项目功能差异(DIF)会使考试分数失去可比性,并严重威胁考试效度。尽管传统方法,如逻辑回归(LR)和曼特尔 - 亨塞尔(MH)方法,效果良好,但它们容易受到考试中高比例DIF项目和缺失数据的影响。本研究开发了一种简单而有效的方法,利用两组对所研究项目的回答的比值比(OR)来检测DIF。OR方法利用了考生回答中的所有可用信息,并且可以消除总分中偏差的潜在影响。通过一系列模拟研究,对DIF模式、影响、样本量(相等/不相等)、净化程序(有/无)、DIF项目百分比和缺失数据比例进行了操控,评估了OR方法的性能,并与LR和MH方法进行了比较。结果表明,在考试中存在高比例偏向同一组的DIF项目时,未采用净化程序的OR方法在控制假阳性率和产生高真阳性率方面优于LR和MH方法。此外,当考试采用项目矩阵抽样设计时,只有OR方法可行。通过一个实证例子说明了OR方法的有效性。

相似文献

1
Using Odds Ratios to Detect Differential Item Functioning.
Appl Psychol Meas. 2018 Nov;42(8):613-629. doi: 10.1177/0146621618762738. Epub 2018 Mar 21.
2
Applying Logistic Regression to Detect Differential Item Functioning in Multidimensional Data.
Front Psychol. 2018 Jul 27;9:1302. doi: 10.3389/fpsyg.2018.01302. eCollection 2018.
3
Real and Artificial Differential Item Functioning in Polytomous Items.
Educ Psychol Meas. 2015 Apr;75(2):185-207. doi: 10.1177/0013164414534258. Epub 2014 May 16.
4
A Comparison of Differential Item Functioning Detection Methods in Cognitive Diagnostic Models.
Front Psychol. 2019 May 17;10:1137. doi: 10.3389/fpsyg.2019.01137. eCollection 2019.
5
The Matching Criterion Purification for Differential Item Functioning Analyses in a Large-Scale Assessment.
Educ Psychol Meas. 2016 Feb;76(1):141-163. doi: 10.1177/0013164415585166. Epub 2015 May 18.
6
A New Stopping Criterion for Rasch Trees Based on the Mantel-Haenszel Effect Size Measure for Differential Item Functioning.
Educ Psychol Meas. 2023 Feb;83(1):181-212. doi: 10.1177/00131644221077135. Epub 2022 Feb 28.
8
A Log-Linear Modeling Approach for Differential Item Functioning Detection in Polytomously Scored Items.
Educ Psychol Meas. 2020 Feb;80(1):145-162. doi: 10.1177/0013164419853000. Epub 2019 Jun 10.
9
Generalized Mantel-Haenszel Estimators for Simultaneous Differential Item Functioning Tests.
Educ Psychol Meas. 2023 Oct;83(5):1007-1032. doi: 10.1177/00131644221128341. Epub 2022 Oct 15.
10
A Power Formula for the Mantel-Haenszel Test for Differential Item Functioning.
Appl Psychol Meas. 2015 Jul;39(5):373-388. doi: 10.1177/0146621614568805. Epub 2015 Feb 5.

引用本文的文献

1
A Generalized Multi-Detector Combination Approach for Differential Item Functioning Detection.
Appl Psychol Meas. 2024 Dec 19:01466216241310602. doi: 10.1177/01466216241310602.
2
Enhancing Precision in Predicting Magnitude of Differential Item Functioning: An M-DIF Pretrained Model Approach.
Educ Psychol Meas. 2024 Oct 1:00131644241279882. doi: 10.1177/00131644241279882.
3
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions.
Appl Psychol Meas. 2024 Nov;48(7-8):303-322. doi: 10.1177/01466216241284295. Epub 2024 Sep 17.
4
Differential Item Functioning Among English Language Learners on a Large-Scale Mathematics Assessment.
Front Psychol. 2021 Jul 27;12:657335. doi: 10.3389/fpsyg.2021.657335. eCollection 2021.
6
A Note on the Odds Ratio DIF Index.
Appl Psychol Meas. 2021 Jan;45(1):71-73. doi: 10.1177/0146621620947185. Epub 2020 Aug 14.

本文引用的文献

1
Anchor Selection Strategies for DIF Analysis: Review, Assessment, and New Approaches.
Educ Psychol Meas. 2015 Feb;75(1):22-56. doi: 10.1177/0013164414529792. Epub 2014 Apr 21.
2
A general framework and an R package for the detection of dichotomous differential item functioning.
Behav Res Methods. 2010 Aug;42(3):847-62. doi: 10.3758/BRM.42.3.847.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验