Suppr超能文献

肺 CT 图像的周围和结节内放射组学特征可区分腺癌和肉芽肿

Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas.

机构信息

From the Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207 (N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer Institute-Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.); Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.); and Hematology and Oncology, New York University, Perlmutter Cancer Center, New York, NY (V.V.).

出版信息

Radiology. 2019 Mar;290(3):783-792. doi: 10.1148/radiol.2018180910. Epub 2018 Dec 18.

Abstract

Purpose To evaluate ability of radiomic (computer-extracted imaging) features to distinguish non-small cell lung cancer adenocarcinomas from granulomas at noncontrast CT. Materials and Methods For this retrospective study, screening or standard diagnostic noncontrast CT images were collected for 290 patients (mean age, 68 years; range, 18-92 years; 125 men [mean age, 67 years; range, 18-90 years] and 165 women [mean age, 68 years; range, 33-92 years]) from two institutions between 2007 and 2013. Histopathologic analysis was available for one nodule per patient. Corresponding nodule of interest was identified on axial CT images by a radiologist with manual annotation. Nodule shape, wavelet (Gabor), and texture-based (Haralick and Laws energy) features were extracted from intra- and perinodular regions. Features were pruned to train machine learning classifiers with 145 patients. In a test set of 145 patients, classifier results were compared against a convolutional neural network (CNN) and diagnostic readings of two radiologists. Results Support vector machine classifier with intranodular radiomic features achieved an area under the receiver operating characteristic curve (AUC) of 0.75 on the test set. Combining radiomics of intranodular with perinodular regions improved the AUC to 0.80. On the same test set, CNN resulted in an AUC of 0.76. Radiologist readers achieved AUCs of 0.61 and 0.60, respectively. Conclusion Radiomic features from intranodular and perinodular regions of nodules can distinguish non-small cell lung cancer adenocarcinomas from benign granulomas at noncontrast CT. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Nishino in this issue.

摘要

目的 评估放射组学(计算机提取的成像)特征在非对比 CT 上区分非小细胞肺癌腺癌与肉芽肿的能力。

材料与方法 本回顾性研究共纳入 290 例患者(平均年龄,68 岁;范围,18-92 岁;125 例男性[平均年龄,67 岁;范围,18-90 岁]和 165 例女性[平均年龄,68 岁;范围,33-92 岁]),这些患者分别来自两家机构于 2007 年至 2013 年期间进行的筛查或标准诊断性非对比 CT 扫描。每位患者均有一个结节的组织病理学分析结果。由一名放射科医生通过手动注释在轴向 CT 图像上确定相应的感兴趣结节。从结节内和结节周围区域提取结节形状、小波(Gabor)和基于纹理(哈尔尼克和劳斯拉斯能量)的特征。特征被修剪,以便在 145 例患者中训练机器学习分类器。在 145 例患者的测试集中,将分类器结果与卷积神经网络(CNN)和两名放射科医生的诊断结果进行比较。

结果 基于结节内放射组学特征的支持向量机分类器在测试集中的受试者工作特征曲线(AUC)下面积为 0.75。将结节内放射组学与结节周围区域的放射组学相结合,可将 AUC 提高至 0.80。在同一测试集中,CNN 的 AUC 为 0.76。放射科医生读者的 AUC 分别为 0.61 和 0.60。

结论 结节内和结节周围区域的放射组学特征可在非对比 CT 上区分非小细胞肺癌腺癌与良性肉芽肿。

©RSNA,2018

在线补充材料可在本文中获得。另见本期内 Nishino 的社论。

相似文献

1
Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas.
Radiology. 2019 Mar;290(3):783-792. doi: 10.1148/radiol.2018180910. Epub 2018 Dec 18.
5
Peri- and intra-nodular radiomic features based on F-FDG PET/CT to distinguish lung adenocarcinomas from pulmonary granulomas.
Front Med (Lausanne). 2024 Aug 7;11:1453421. doi: 10.3389/fmed.2024.1453421. eCollection 2024.
7
The Effects of Perinodular Features on Solid Lung Nodule Classification.
J Digit Imaging. 2021 Aug;34(4):798-810. doi: 10.1007/s10278-021-00453-2. Epub 2021 Mar 31.
8
Lung Cancer and Granuloma Identification Using a Deep Learning Model to Extract 3-Dimensional Radiomics Features in CT Imaging.
Clin Lung Cancer. 2021 Sep;22(5):e756-e766. doi: 10.1016/j.cllc.2021.02.004. Epub 2021 Feb 6.

引用本文的文献

4
MRI-based multiregional radiomics for preoperative prediction of Ki-67 expression in meningiomas: a two-center study.
Front Neurol. 2025 Jul 24;16:1554539. doi: 10.3389/fneur.2025.1554539. eCollection 2025.
6
Progress and challenges of artificial intelligence in lung cancer clinical translation.
NPJ Precis Oncol. 2025 Jul 1;9(1):210. doi: 10.1038/s41698-025-00986-7.
7
CT-based radiomics for prediction of response to neoadjuvant immunochemotherapy in patients with esophageal carcinoma.
Front Oncol. 2025 May 12;15:1511691. doi: 10.3389/fonc.2025.1511691. eCollection 2025.

本文引用的文献

1
Combination of computer extracted shape and texture features enables discrimination of granulomas from adenocarcinoma on chest computed tomography.
J Med Imaging (Bellingham). 2018 Apr;5(2):024501. doi: 10.1117/1.JMI.5.2.024501. Epub 2018 Apr 18.
2
A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection.
Med Phys. 2018 May;45(5):2097-2107. doi: 10.1002/mp.12846. Epub 2018 Mar 25.
3
Radiomic features analysis in computed tomography images of lung nodule classification.
PLoS One. 2018 Feb 5;13(2):e0192002. doi: 10.1371/journal.pone.0192002. eCollection 2018.
4
Radiomics and radiogenomics in lung cancer: A review for the clinician.
Lung Cancer. 2018 Jan;115:34-41. doi: 10.1016/j.lungcan.2017.10.015. Epub 2017 Nov 8.
5
3D multi-view convolutional neural networks for lung nodule classification.
PLoS One. 2017 Nov 16;12(11):e0188290. doi: 10.1371/journal.pone.0188290. eCollection 2017.
8
2D and 3D CT Radiomics Features Prognostic Performance Comparison in Non-Small Cell Lung Cancer.
Transl Oncol. 2017 Dec;10(6):886-894. doi: 10.1016/j.tranon.2017.08.007. Epub 2017 Sep 18.
9
Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation.
PLoS One. 2017 Jun 8;12(6):e0178944. doi: 10.1371/journal.pone.0178944. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验