From the Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207 (N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer Institute-Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.); Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.); and Hematology and Oncology, New York University, Perlmutter Cancer Center, New York, NY (V.V.).
Radiology. 2019 Mar;290(3):783-792. doi: 10.1148/radiol.2018180910. Epub 2018 Dec 18.
Purpose To evaluate ability of radiomic (computer-extracted imaging) features to distinguish non-small cell lung cancer adenocarcinomas from granulomas at noncontrast CT. Materials and Methods For this retrospective study, screening or standard diagnostic noncontrast CT images were collected for 290 patients (mean age, 68 years; range, 18-92 years; 125 men [mean age, 67 years; range, 18-90 years] and 165 women [mean age, 68 years; range, 33-92 years]) from two institutions between 2007 and 2013. Histopathologic analysis was available for one nodule per patient. Corresponding nodule of interest was identified on axial CT images by a radiologist with manual annotation. Nodule shape, wavelet (Gabor), and texture-based (Haralick and Laws energy) features were extracted from intra- and perinodular regions. Features were pruned to train machine learning classifiers with 145 patients. In a test set of 145 patients, classifier results were compared against a convolutional neural network (CNN) and diagnostic readings of two radiologists. Results Support vector machine classifier with intranodular radiomic features achieved an area under the receiver operating characteristic curve (AUC) of 0.75 on the test set. Combining radiomics of intranodular with perinodular regions improved the AUC to 0.80. On the same test set, CNN resulted in an AUC of 0.76. Radiologist readers achieved AUCs of 0.61 and 0.60, respectively. Conclusion Radiomic features from intranodular and perinodular regions of nodules can distinguish non-small cell lung cancer adenocarcinomas from benign granulomas at noncontrast CT. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Nishino in this issue.
目的 评估放射组学(计算机提取的成像)特征在非对比 CT 上区分非小细胞肺癌腺癌与肉芽肿的能力。
材料与方法 本回顾性研究共纳入 290 例患者(平均年龄,68 岁;范围,18-92 岁;125 例男性[平均年龄,67 岁;范围,18-90 岁]和 165 例女性[平均年龄,68 岁;范围,33-92 岁]),这些患者分别来自两家机构于 2007 年至 2013 年期间进行的筛查或标准诊断性非对比 CT 扫描。每位患者均有一个结节的组织病理学分析结果。由一名放射科医生通过手动注释在轴向 CT 图像上确定相应的感兴趣结节。从结节内和结节周围区域提取结节形状、小波(Gabor)和基于纹理(哈尔尼克和劳斯拉斯能量)的特征。特征被修剪,以便在 145 例患者中训练机器学习分类器。在 145 例患者的测试集中,将分类器结果与卷积神经网络(CNN)和两名放射科医生的诊断结果进行比较。
结果 基于结节内放射组学特征的支持向量机分类器在测试集中的受试者工作特征曲线(AUC)下面积为 0.75。将结节内放射组学与结节周围区域的放射组学相结合,可将 AUC 提高至 0.80。在同一测试集中,CNN 的 AUC 为 0.76。放射科医生读者的 AUC 分别为 0.61 和 0.60。
结论 结节内和结节周围区域的放射组学特征可在非对比 CT 上区分非小细胞肺癌腺癌与良性肉芽肿。
©RSNA,2018
在线补充材料可在本文中获得。另见本期内 Nishino 的社论。