Suppr超能文献

多机构验证 RTOG 0617 入组患者基于知识的计划模型:对合作组试验中计划质量控制的影响。

Multi-Institutional Validation of a Knowledge-Based Planning Model for Patients Enrolled in RTOG 0617: Implications for Plan Quality Controls in Cooperative Group Trials.

机构信息

Department of Radiation Oncology, Washington University in St Louis, St Louis, Missouri.

Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia.

出版信息

Pract Radiat Oncol. 2019 Mar;9(2):e218-e227. doi: 10.1016/j.prro.2018.11.007. Epub 2018 Dec 15.

Abstract

PURPOSE

This study aimed to evaluate the feasibility of using a single-institution, knowledge-based planning (KBP) model as a dosimetric plan quality control (QC) for multi-institutional clinical trials. The efficacy of this QC tool was retrospectively evaluated using a subset of plans submitted to Radiation Therapy Oncology Group (RTOG) study 0617.

METHODS AND MATERIALS

A single KBP model was created using commercially available software (RapidPlan; Varian Medical Systems, Palo Alto, CA) and data from 106 patients with non-small cell lung cancer who were treated at a single institution. All plans had prescriptions that ranged from 60 Gy in 30 fractions to 74 Gy in 37 fractions and followed the planning guidelines from RTOG 0617. Two sets of optimization objectives were created to produce different trade-offs using the single KBP model predictions: one prioritizing target coverage and a second prioritizing lung sparing (LS) while allowing an acceptable variation in target coverage. Three institutions submitted a high volume of clinical plans to RTOG 0617 and provided data on 25 patients, which were replanned using both sets of optimization objectives. Model-generated, dose-volume histogram predictions were used to identify patients who exceeded the lung clinical target volume (CTV) V >37% and would benefit from the LS objectives. Overall plan quality differences between KBP-generated plans and clinical plans were evaluated at RTOG 0617-defined dosimetric endpoints.

RESULTS

Target coverage and organ at risk sparing was significantly improved for most KBP-generated plans compared with those from clinical trial data. The KBP model using prioritized target coverage objectives reduced heart D and V by 2.1 Gy and 5.2%, respectively. Similarly, using LS objectives reduced the lung CTV D and V by 2.0 Gy and 2.9%, respectively. The KBP predictions correctly identified all patients with lung CTV V20Gy > 37% (5 of 25 patients) and significantly reduced the dose to the lung CTV by applying the LS optimization objectives.

CONCLUSIONS

A single-institution KBP model can be applied as a QC tool for multi-institutional clinical trials to improve overall plan quality and provide decision-support to determine the need for anatomy-based dosimetric trade-offs.

摘要

目的

本研究旨在评估使用单一机构、基于知识的计划(KBP)模型作为多机构临床试验剂量学计划质量控制(QC)的可行性。使用提交给放射治疗肿瘤学组(RTOG)研究 0617 的计划子集,回顾性评估了这种 QC 工具的功效。

方法和材料

使用商业上可用的软件(RapidPlan;Varian Medical Systems,Palo Alto,CA)和来自一家机构的 106 例非小细胞肺癌患者的数据创建了一个单一的 KBP 模型。所有计划的处方剂量范围从 60Gy/30 次到 74Gy/37 次,均遵循 RTOG 0617 的计划指南。创建了两组优化目标,以使用单一 KBP 模型预测产生不同的权衡:一组优先考虑目标覆盖,另一组优先考虑肺保护(LS),同时允许目标覆盖的可接受变化。三个机构向 RTOG 0617 提交了大量临床计划,并提供了 25 例患者的数据,使用两组优化目标对这些数据进行了重新计划。使用模型生成的剂量-体积直方图预测来识别那些超过肺临床靶体积(CTV)V>37%的患者,并从 LS 目标中获益。在 RTOG 0617 定义的剂量学终点处评估 KBP 生成的计划与临床计划之间的整体计划质量差异。

结果

与临床试验数据相比,大多数 KBP 生成的计划在目标覆盖和危及器官保护方面有显著改善。使用优先考虑目标覆盖目标的 KBP 模型分别将心脏 D 和 V 降低了 2.1Gy 和 5.2%。同样,使用 LS 目标将肺 CTV D 和 V 分别降低了 2.0Gy 和 2.9%。KBP 预测正确识别了所有肺 CTV V20Gy>37%(25 例患者中有 5 例)的患者,并通过应用 LS 优化目标显著降低了肺 CTV 的剂量。

结论

单一机构的 KBP 模型可作为多机构临床试验的 QC 工具,以提高整体计划质量,并为确定基于解剖的剂量学权衡的必要性提供决策支持。

相似文献

4
A comparison of two methodologies for radiotherapy treatment plan optimization and QA for clinical trials.
J Appl Clin Med Phys. 2021 Oct;22(10):329-337. doi: 10.1002/acm2.13401. Epub 2021 Aug 25.
6
Improving knowledge-based treatment planning for lung cancer radiotherapy with automatic multi-criteria optimized training plans.
Acta Oncol. 2023 Oct;62(10):1194-1200. doi: 10.1080/0284186X.2023.2238882. Epub 2023 Aug 17.
7
Validation of in-house knowledge-based planning model for advance-stage lung cancer patients treated using VMAT radiotherapy.
Br J Radiol. 2020 Feb 1;93(1106):20190535. doi: 10.1259/bjr.20190535. Epub 2020 Jan 6.
8
Highly Efficient Training, Refinement, and Validation of a Knowledge-based Planning Quality-Control System for Radiation Therapy Clinical Trials.
Int J Radiat Oncol Biol Phys. 2017 Jan 1;97(1):164-172. doi: 10.1016/j.ijrobp.2016.10.005. Epub 2016 Oct 13.
10
Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer.
Int J Radiat Oncol Biol Phys. 2016 May 1;95(1):523-533. doi: 10.1016/j.ijrobp.2015.11.002. Epub 2015 Nov 10.

引用本文的文献

1
ADAPT-marketplace - A web-application for XML-based template sharing in radiation oncology.
J Appl Clin Med Phys. 2025 Jul;26(7):e70148. doi: 10.1002/acm2.70148.
2
Knowledge-Based RapidPlan Volumetric Modulated Arc Therapy Model in Nasopharyngeal Carcinoma.
Adv Radiat Oncol. 2025 Jan 13;10(5):101716. doi: 10.1016/j.adro.2025.101716. eCollection 2025 May.
3
Critical assessment of knowledge-based models for craniospinal irradiation of paediatric patients.
Phys Imaging Radiat Oncol. 2025 Jan 20;33:100703. doi: 10.1016/j.phro.2025.100703. eCollection 2025 Jan.
4
Comparative evaluation of two dose-volume histogram prediction tools for treatment planning: Treatment planning quality and dose verification accuracy.
Tech Innov Patient Support Radiat Oncol. 2024 Dec 13;33:100297. doi: 10.1016/j.tipsro.2024.100297. eCollection 2025 Mar.
5
Assessing population-based to personalized planning strategies for head and neck adaptive radiotherapy.
J Appl Clin Med Phys. 2025 Mar;26(3):e14576. doi: 10.1002/acm2.14576. Epub 2024 Dec 3.
7
Effects of model size and composition on quality of head-and-neck knowledge-based plans.
J Appl Clin Med Phys. 2024 Feb;25(2):e14168. doi: 10.1002/acm2.14168. Epub 2023 Oct 5.
8
Automated evaluation for rapid implementation of knowledge-based radiotherapy planning models.
J Appl Clin Med Phys. 2023 Oct;24(10):e14152. doi: 10.1002/acm2.14152. Epub 2023 Sep 13.
10
Evaluating the utility of knowledge-based planning for clinical trials using the TROG 08.03 post prostatectomy radiation therapy planning data.
Phys Imaging Radiat Oncol. 2022 May 13;22:91-97. doi: 10.1016/j.phro.2022.05.004. eCollection 2022 Apr.

本文引用的文献

1
Improving Quality and Consistency in NRG Oncology Radiation Therapy Oncology Group 0631 for Spine Radiosurgery via Knowledge-Based Planning.
Int J Radiat Oncol Biol Phys. 2018 Mar 15;100(4):1067-1074. doi: 10.1016/j.ijrobp.2017.12.276. Epub 2018 Jan 4.
2
Highly Efficient Training, Refinement, and Validation of a Knowledge-based Planning Quality-Control System for Radiation Therapy Clinical Trials.
Int J Radiat Oncol Biol Phys. 2017 Jan 1;97(1):164-172. doi: 10.1016/j.ijrobp.2016.10.005. Epub 2016 Oct 13.
4
Effect of Dosimetric Outliers on the Performance of a Commercial Knowledge-Based Planning Solution.
Int J Radiat Oncol Biol Phys. 2016 Mar 1;94(3):469-77. doi: 10.1016/j.ijrobp.2015.11.011. Epub 2015 Nov 10.
7
Quantifying Unnecessary Normal Tissue Complication Risks due to Suboptimal Planning: A Secondary Study of RTOG 0126.
Int J Radiat Oncol Biol Phys. 2015 Jun 1;92(2):228-35. doi: 10.1016/j.ijrobp.2015.01.046. Epub 2015 Apr 3.
8
Evaluation of a knowledge-based planning solution for head and neck cancer.
Int J Radiat Oncol Biol Phys. 2015 Mar 1;91(3):612-20. doi: 10.1016/j.ijrobp.2014.11.014. Epub 2015 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验