Suppr超能文献

用于高效人脸检测的锚级联

Anchor Cascade for Efficient Face Detection.

作者信息

Yu Baosheng, Tao Dacheng

出版信息

IEEE Trans Image Process. 2018 Dec 14. doi: 10.1109/TIP.2018.2886790.

Abstract

Face detection is essential to facial analysis tasks such as facial reenactment and face recognition. Both cascade face detectors and anchor-based face detectors have translated shining demos into practice and received intensive attention from the community. However, cascade face detectors often suffer from a low detection accuracy, while anchor-based face detectors rely heavily on very large neural networks pre-trained on large scale image classification datasets such as ImageNet [1], which is not computationally efficient for both training and deployment. In this paper, we devise an efficient anchor-based cascade framework called anchor cascade. To improve the detection accuracy by exploring contextual information, we further propose a context pyramid maxout mechanism for anchor cascade. As a result, anchor cascade can train very efficient face detection models with a high detection accuracy. Specifically, comparing with a popular CNN-based cascade face detector MTCNN [2], our anchor cascade face detector greatly improves the detection accuracy, e.g., from 0.9435 to 0.9704 at 1k false positives on FDDB, while it still runs in comparable speed. Experimental results on two widely used face detection benchmarks, FDDB and WIDER FACE, demonstrate the effectiveness of the proposed framework.

摘要

人脸检测对于诸如面部重演和人脸识别等面部分析任务至关重要。级联人脸检测器和基于锚点的人脸检测器都已将出色的演示付诸实践,并受到了社区的广泛关注。然而,级联人脸检测器的检测准确率往往较低,而基于锚点的人脸检测器严重依赖于在大规模图像分类数据集(如图像网[1])上预训练的非常大的神经网络,这对于训练和部署来说在计算上都效率不高。在本文中,我们设计了一种高效的基于锚点的级联框架,称为锚点级联。为了通过探索上下文信息提高检测准确率,我们进一步为锚点级联提出了一种上下文金字塔最大池化机制。结果,锚点级联可以训练出具有高检测准确率的非常高效的人脸检测模型。具体而言,与流行的基于卷积神经网络的级联人脸检测器MTCNN[2]相比,我们的锚点级联人脸检测器大大提高了检测准确率,例如在FDDB上,在误报率为1000时,从0.9435提高到0.9704,同时其运行速度仍相当。在两个广泛使用的人脸检测基准FDDB和WIDER FACE上的实验结果证明了所提出框架的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验