Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America.
Software and Systems Division, National Institute of Standards and Technology, Boulder, Colorado, United States of America.
PLoS One. 2018 Dec 20;13(12):e0208820. doi: 10.1371/journal.pone.0208820. eCollection 2018.
This paper lays the groundwork for linking Hounsfield unit measurements to the International System of Units (SI), ultimately enabling traceable measurements across X-ray CT (XCT) machines. We do this by characterizing a material basis that may be used in XCT reconstruction giving linear combinations of concentrations of chemical elements (in the SI units of mol/m3) which may be observed at each voxel. By implication, linear combinations not in the set are not observable.
We formulated a model for our material basis with a set of measurements of elemental powders at four tube voltages, 80 kV, 100 kV, 120 kV, and 140 kV, on a medical XCT. The samples included 30 small plastic bottles of powders containing various compounds spanning the atomic numbers up to 20, and a bottle of water and one of air. Using the chemical formulas and measured masses, we formed a matrix giving the number of Hounsfield units per (mole per cubic meter) at each tube voltage for each of 13 chemical elements. We defined a corresponding matrix in units we call molar Hounsfield unit (HU) potency, the difference in HU values that an added mole per cubic meter in a given voxel would add to the measured HU value. We built a matrix of molar potencies for each chemical element and tube voltage and performed a singular value decomposition (SVD) on these to formulate our material basis. We determined that the dimension of this basis is two. We then compared measurements in this material space with theoretical measurements, combining XCOM cross section data with the tungsten anode spectral model using interpolating cubic splines (TASMICS), a one-parameter filter, and a simple detector model, creating a matrix similar to our experimental matrix for the first 20 chemical elements. Finally, we compared the model predictions to Hounsfield unit measurements on three XCT calibration phantoms taken from the literature.
We predict the experimental HU potency values derived from our scans of chemical elements with our theoretical model built from XCOM data. The singular values and singular vectors of the model and powder measurements are in substantial agreement. Application of the Bayesian Information Criterion (BIC) shows that exactly two singular values and singular vectors describe the results over four tube voltages. We give a good account of the HU values from the literature, measured for the calibration phantoms at several tube voltages for several commercial instruments, compared with our theoretical model without introducing additional parameters.
We have developed a two-dimensional material basis that specifies the degree to which individual elements in compounds effect the HU values in XCT images of samples with elements up to atomic number Z = 20. We show that two dimensions is sufficient given the contrast and noise in our experiment. The linear combination of concentrations of elements that can be observed using a medical XCT have been characterized, providing a material basis for use in dual-energy reconstruction. This approach provides groundwork for improved reconstruction and for the link of Hounsfield units to the SI.
本文为将亨氏单位测量值与国际单位制(SI)联系起来奠定基础,最终实现跨 X 射线计算机断层扫描(XCT)机器的可追踪测量。我们通过描述在 XCT 重建中可能使用的材料基础来实现这一点,该基础提供了可以在每个体素中观察到的化学元素浓度的线性组合(以 SI 单位摩尔/立方米表示)。由此可见,不在集合中的线性组合是不可观察的。
我们使用在医疗 XCT 上对四种管电压(80 kV、100 kV、120 kV 和 140 kV)的元素粉末进行的一系列测量,为我们的材料基础制定了一个模型。样品包括 30 个小塑料瓶粉末,其中含有各种化合物,原子数高达 20,以及一瓶水和一瓶空气。使用化学式和测量质量,我们形成了一个矩阵,给出了每个管电压下每个化学元素的每(摩尔/立方米)的亨氏单位数。我们定义了一个相应的矩阵,我们称之为摩尔亨氏单位(HU)效价,即给定体素中添加一摩尔/立方米会给测量 HU 值增加的 HU 值差异。我们为每个化学元素和管电压构建了一个摩尔效价矩阵,并对其进行奇异值分解(SVD),以制定我们的材料基础。我们确定该基础的维度为二。然后,我们将这些在材料空间中的测量值与理论测量值进行比较,将 XCOM 截面数据与钨阳极光谱模型结合使用,使用插值三次样条(TASMICS)、一个参数滤波器和一个简单的探测器模型,为前 20 个化学元素创建一个类似于我们实验矩阵的矩阵。最后,我们将模型预测与文献中来自三个 XCT 校准体模的亨氏单位测量值进行了比较。
我们使用从 XCOM 数据构建的理论模型预测了从我们的化学元素扫描中得出的实验 HU 效价值。模型和粉末测量的奇异值和奇异向量基本一致。贝叶斯信息准则(BIC)的应用表明,在四个管电压下,只有两个奇异值和奇异向量可以描述结果。我们很好地解释了文献中的 HU 值,这些值是为几个商业仪器在几个管电压下为校准体模测量的,而无需引入额外的参数。
我们已经开发了一个二维材料基础,该基础指定了化合物中单个元素在影响样品 XCT 图像中 HU 值方面的程度,这些样品的元素高达原子数 Z = 20。我们表明,考虑到我们实验中的对比度和噪声,两个维度就足够了。已经描述了可以使用医疗 XCT 观察到的元素浓度的线性组合,为双能重建提供了材料基础。这种方法为改进重建和将亨氏单位与 SI 联系起来提供了基础。