Suppr超能文献

sonic 刺猬信号通过靶向 ppary 稳定性引发高脂肪饮食诱导的胰岛素抵抗。

Sonic hedgehog signaling instigates high-fat diet-induced insulin resistance by targeting PPARγ stability.

机构信息

From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and.

the Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China

出版信息

J Biol Chem. 2019 Mar 1;294(9):3284-3293. doi: 10.1074/jbc.RA118.004411. Epub 2018 Dec 20.

Abstract

Obesity is a major risk for patients with chronic metabolic disorders including type 2 diabetes. Sonic hedgehog (Shh) is a morphogen that regulates the pancreas and adipose tissue formation during embryonic development. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily and one of the most important regulators of insulin action. Here, we evaluated the role and mechanism of Shh signaling in obesity-associated insulin resistance and characterized its effect on PPARγ. We showed that Shh expression was up-regulated in subcutaneous fat from obese mice. In differentiated 3T3-L1 and primary cultured adipocytes from rats, recombinant Shh protein and SAG (an agonist of Shh signaling) activated an extracellular signal-regulated kinase (ERK)-dependent noncanonical pathway and induced PPARγ phosphorylation at serine 112, which decreased PPARγ activity. Meanwhile, Shh signaling degraded PPARγ protein via binding of PPARγ to neural precursor cell-expressed developmentally down-regulated protein 4-1 (NEDD4-1). Furthermore, vismodegib, an inhibitor of Shh signaling, attenuated ERK phosphorylation induced by a high fat diet (HFD) and restored PPARγ protein level, thus ameliorating glucose intolerance and insulin resistance in obese mice. Our finding suggests that Shh in subcutaneous fat decreases PPARγ activity and stability via activation of an ERK-dependent noncanonical pathway, resulting in impaired insulin action. Inhibition of Shh may serve as a potential therapeutic approach to treat obesity-related diabetes.

摘要

肥胖是患有 2 型糖尿病等慢性代谢紊乱的患者的主要风险因素。Sonic hedgehog(Shh)是一种形态发生素,可在胚胎发育过程中调节胰腺和脂肪组织的形成。过氧化物酶体增殖物激活受体 γ(PPARγ)是核受体超家族的成员之一,是胰岛素作用的最重要调节剂之一。在这里,我们评估了 Shh 信号在肥胖相关胰岛素抵抗中的作用和机制,并对其对 PPARγ 的作用进行了特征描述。我们发现肥胖小鼠的皮下脂肪中 Shh 表达上调。在分化的 3T3-L1 和大鼠原代培养的脂肪细胞中,重组 Shh 蛋白和 SAG(Shh 信号的激动剂)激活了细胞外信号调节激酶(ERK)依赖性非经典途径,并诱导 PPARγ 在丝氨酸 112 处磷酸化,从而降低了 PPARγ 的活性。同时,Shh 信号通过 PPARγ 与神经前体细胞表达的发育下调蛋白 4-1(NEDD4-1)结合来降解 PPARγ 蛋白。此外,Shh 信号抑制剂维莫德吉(vismodegib)可减弱高脂肪饮食(HFD)诱导的 ERK 磷酸化,并恢复 PPARγ 蛋白水平,从而改善肥胖小鼠的葡萄糖耐量和胰岛素抵抗。我们的发现表明,皮下脂肪中的 Shh 通过激活 ERK 依赖性非经典途径降低了 PPARγ 的活性和稳定性,从而导致胰岛素作用受损。抑制 Shh 可能是治疗肥胖相关糖尿病的一种潜在治疗方法。

相似文献

1
Sonic hedgehog signaling instigates high-fat diet-induced insulin resistance by targeting PPARγ stability.
J Biol Chem. 2019 Mar 1;294(9):3284-3293. doi: 10.1074/jbc.RA118.004411. Epub 2018 Dec 20.
4
An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ.
Nature. 2015 Jan 15;517(7534):391-5. doi: 10.1038/nature13887. Epub 2014 Nov 17.
6
Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway.
PLoS One. 2014 Sep 2;9(9):e105809. doi: 10.1371/journal.pone.0105809. eCollection 2014.
9
EPA and DHA differentially improve insulin resistance by reducing adipose tissue inflammation-targeting GPR120/PPARγ pathway.
J Nutr Biochem. 2024 Aug;130:109648. doi: 10.1016/j.jnutbio.2024.109648. Epub 2024 Apr 15.

引用本文的文献

1
Research advances in intramuscular fat deposition and chicken meat quality: genetics and nutrition.
J Anim Sci Biotechnol. 2025 Jul 16;16(1):100. doi: 10.1186/s40104-025-01234-5.
2
A Wrong Fate Decision in Adipose Stem Cells upon Obesity.
Cells. 2023 Feb 19;12(4):662. doi: 10.3390/cells12040662.
3
Does Childhood Obesity Trigger Neuroinflammation?
Biomedicines. 2022 Aug 11;10(8):1953. doi: 10.3390/biomedicines10081953.
5
Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2.
Nat Metab. 2021 Nov;3(11):1569-1584. doi: 10.1038/s42255-021-00488-3. Epub 2021 Nov 8.
6
Assessment of CircRNA Expression Profiles and Potential Functions in Brown Adipogenesis.
Front Genet. 2021 Oct 22;12:769690. doi: 10.3389/fgene.2021.769690. eCollection 2021.
7
Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis.
Adv Drug Deliv Rev. 2021 Sep;176:113888. doi: 10.1016/j.addr.2021.113888. Epub 2021 Jul 24.
8
Maternal obesity and developmental programming of neuropsychiatric disorders: An inflammatory hypothesis.
Brain Neurosci Adv. 2021 Apr 8;5:23982128211003484. doi: 10.1177/23982128211003484. eCollection 2021 Jan-Dec.
9
Cell-Intrinsic Tumorigenic Functions of PPARγ in Bladder Urothelial Carcinoma.
Mol Cancer Res. 2021 Apr;19(4):598-611. doi: 10.1158/1541-7786.MCR-20-0189. Epub 2021 Jan 11.
10
Lipid metabolism adaptations are reduced in human compared to murine Schwann cells following injury.
Nat Commun. 2020 May 1;11(1):2123. doi: 10.1038/s41467-020-15915-4.

本文引用的文献

1
Primary Cilia as a Signaling Platform for Control of Energy Metabolism.
Diabetes Metab J. 2018 Apr;42(2):117-127. doi: 10.4093/dmj.2018.42.2.117.
2
Mild Suppression of Hyperinsulinemia to Treat Obesity and Insulin Resistance.
Trends Endocrinol Metab. 2018 Jun;29(6):389-399. doi: 10.1016/j.tem.2018.03.018. Epub 2018 Apr 14.
3
Association of sleep disturbances with obesity, insulin resistance and the metabolic syndrome.
Metabolism. 2018 Jul;84:67-75. doi: 10.1016/j.metabol.2018.04.001. Epub 2018 Apr 6.
5
The cell biology of systemic insulin function.
J Cell Biol. 2018 Jul 2;217(7):2273-2289. doi: 10.1083/jcb.201802095. Epub 2018 Apr 5.
6
Hedgehog Signaling in Prostate Development, Regeneration and Cancer.
J Dev Biol. 2016 Oct 19;4(4):30. doi: 10.3390/jdb4040030.
7
Sonic Hedgehog Signaling and Development of the Dentition.
J Dev Biol. 2017 May 31;5(2):6. doi: 10.3390/jdb5020006.
8
Canonical Sonic Hedgehog Signaling in Early Lung Development.
J Dev Biol. 2017 Mar 13;5(1):3. doi: 10.3390/jdb5010003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验