Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Department of Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Acta Biomater. 2019 Sep 1;95:319-327. doi: 10.1016/j.actbio.2018.12.026. Epub 2018 Dec 19.
Human induced pluripotent stem cell - derived cardiomyocytes (iPSC-CMs) are regarded as a promising cell source for establishing in-vitro personalized cardiac tissue models and developing therapeutics. However, analyzing cardiac force and drug response using mature human iPSC-CMs in a high-throughput format still remains a great challenge. Here we describe a rapid light-based 3D printing system for fabricating micro-scale force gauge arrays suitable for 24-well and 96-well plates that enable scalable tissue formation and measurement of cardiac force generation in human iPSC-CMs. We demonstrate consistent tissue band formation around the force gauge pillars with aligned sarcomeres. Among the different maturation treatment protocols we explored, 3D aligned cultures on force gauge arrays with in-culture pacing produced the highest expression of mature cardiac marker genes. We further demonstrated the utility of these micro-tissues to develop significantly increased contractile forces in response to treatment with isoproterenol, levosimendan, and omecamtiv mecarbil. Overall, this new 3D printing system allows for high flexibility in force gauge design and can be optimized to achieve miniaturization and promote cardiac tissue maturation with great potential for high-throughput in-vitro drug screening applications. STATEMENT OF SIGNIFICANCE: The application of iPSC-derived cardiac tissues in translatable drug screening is currently limited by the challenges in forming mature cardiac tissue and analyzing cardiac forces in a high-throughput format. We demonstrate the use of a rapid light-based 3D printing system to build a micro-scale force gauge array that enables scalable cardiac tissue formation from iPSC-CMs and measurement of contractile force development. With the capability to provide great flexibility over force gauge design as well as optimization to achieve miniaturization, our 3D printing system serves as a promising tool to build cardiac tissues for high-throughput in-vitro drug screening applications.
人诱导多能干细胞衍生的心肌细胞(iPSC-CMs)被认为是建立体外个性化心肌组织模型和开发治疗方法的有前途的细胞来源。然而,使用成熟的人 iPSC-CMs 以高通量格式分析心脏力量和药物反应仍然是一个巨大的挑战。在这里,我们描述了一种快速基于光的 3D 打印系统,用于制造适合 24 孔和 96 孔板的微尺度力计阵列,该系统可实现可扩展的组织形成和人 iPSC-CMs 中心脏力量产生的测量。我们证明了在力计支柱周围形成一致的组织带,肌节排列整齐。在我们探索的不同成熟处理方案中,3D 对准培养在带有培养中起搏的力计阵列上产生了最高表达的成熟心脏标记基因。我们进一步证明了这些微组织在开发对异丙肾上腺素、左西孟旦和奥马环素美卡贝特治疗的显著增加的收缩力方面的实用性。总体而言,这种新的 3D 打印系统在力计设计方面具有高度的灵活性,可以进行优化以实现小型化并促进心肌组织成熟,具有高通量体外药物筛选应用的巨大潜力。
将 iPSC 衍生的心脏组织应用于可转化的药物筛选目前受到在高通量格式中形成成熟的心脏组织和分析心脏力量的挑战的限制。我们展示了使用快速基于光的 3D 打印系统来构建微尺度力计阵列,该阵列能够从 iPSC-CMs 形成可扩展的心肌组织并测量收缩力的发展。我们的 3D 打印系统具有在力计设计方面提供极大灵活性以及优化以实现小型化的能力,是构建用于高通量体外药物筛选应用的心脏组织的有前途的工具。