Suppr超能文献

使用微创多模光纤在体内实现深部脑成像的亚细胞空间分辨率。

Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber.

作者信息

Vasquez-Lopez Sebastian A, Turcotte Raphaël, Koren Vadim, Plöschner Martin, Padamsey Zahid, Booth Martin J, Čižmár Tomáš, Emptage Nigel J

机构信息

1Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT UK.

2Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ UK.

出版信息

Light Sci Appl. 2018 Dec 19;7:110. doi: 10.1038/s41377-018-0111-0. eCollection 2018.

Abstract

Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system. Advances in wavefront-shaping methods and computational power have recently allowed for a novel approach to high-resolution imaging, utilizing deterministic light propagation through optically complex media and, of particular importance for this work, multimode optical fibers (MMFs). We report a compact and highly optimized approach for minimally invasive in vivo brain imaging applications. The volume of tissue lesion was reduced by more than 100-fold, while preserving diffraction-limited imaging performance utilizing wavefront control of light propagation through a single 50-μm-core MMF. Here, we demonstrated high-resolution fluorescence imaging of subcellular neuronal structures, dendrites and synaptic specializations, in deep-brain regions of living mice, as well as monitored stimulus-driven functional Ca responses. These results represent a major breakthrough in the compromise between high-resolution imaging and tissue damage, heralding new possibilities for deep-brain imaging in vivo.

摘要

实现对深部脑结构具有衍射极限空间分辨率的活体光学成像,是朝着理解哺乳动物中枢神经系统这一目标迈出的重要一步。波前整形方法和计算能力的进步,最近使得一种利用确定性光在光学复杂介质中传播的高分辨率成像新方法成为可能,而对于这项工作特别重要的是多模光纤(MMF)。我们报告了一种用于微创体内脑成像应用的紧凑且高度优化的方法。通过单个50μm芯径的MMF对光传播进行波前控制,在保持衍射极限成像性能的同时,组织损伤体积减少了100多倍。在这里,我们展示了在活体小鼠深部脑区域对亚细胞神经元结构、树突和突触特化的高分辨率荧光成像,以及监测刺激驱动的功能性钙反应。这些结果代表了在高分辨率成像和组织损伤之间权衡的重大突破,预示着体内深部脑成像的新可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e63b/6298975/020eef3542c4/41377_2018_111_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验