Electrical and Computer Engineering, University of Pittsburgh, 3700 O'Hara St, Pittsburgh, PA 15213, USA.
Electrical and Computer Engineering, University of Pittsburgh, 3700 O'Hara St, Pittsburgh, PA 15213, USA.
J Neurosci Methods. 2019 Feb 1;313:44-53. doi: 10.1016/j.jneumeth.2018.11.017. Epub 2018 Dec 24.
Hybrid brain computer interfaces (BCIs) combining multiple brain imaging modalities have been proposed recently to boost the performance of single modality BCIs.
In this paper, we propose a novel motor imagery (MI) hybrid BCI that uses electrical brain activity recorded using Electroencephalography (EEG) as well as cerebral blood flow velocity measured using functional transcranial Doppler ultrasound (fTCD). Features derived from the power spectrum for both EEG and fTCD signals were calculated. Mutual information and linear support vector machines (SVM) were employed for feature selection and classification.
Using the EEG-fTCD combination, average accuracies of 88.33%, 89.48%, and 82.38% were achieved for right arm MI versus baseline, left arm MI versus baseline, and right arm MI versus left arm MI respectively. Compared to performance measures obtained using EEG only, the hybrid system provided significant improvement in terms of accuracy by 4.48%, 5.36%, and 4.76% respectively. In addition, average transmission rates of 4.17, 5.45, and 10.57 bits/min were achieved for right arm MI versus baseline, left arm MI versus baseline, and right arm MI versus left arm MI respectively.
Compared to EEG-fNIRS hybrid BCIs in literature, we achieved similar or higher accuracies with shorter task duration.
The proposed hybrid system is a promising candidate for real-time BCI applications.
最近提出了结合多种脑成像模式的混合脑机接口 (BCI),以提高单模态 BCI 的性能。
在本文中,我们提出了一种新的运动想象 (MI) 混合 BCI,该混合 BCI 使用脑电图 (EEG) 记录的电脑活动以及功能经颅多普勒超声 (fTCD) 测量的脑血流速度。计算了来自 EEG 和 fTCD 信号的功率谱的特征。互信息和线性支持向量机 (SVM) 用于特征选择和分类。
使用 EEG-fTCD 组合,右手臂 MI 相对于基线、左臂 MI 相对于基线和右手臂 MI 相对于左臂 MI 的平均准确率分别为 88.33%、89.48%和 82.38%。与仅使用 EEG 获得的性能指标相比,混合系统在准确率方面分别提高了 4.48%、5.36%和 4.76%。此外,右手臂 MI 相对于基线、左臂 MI 相对于基线和右手臂 MI 相对于左臂 MI 的平均传输率分别为 4.17、5.45 和 10.57 位/分钟。
与文献中的 EEG-fNIRS 混合 BCI 相比,我们在更短的任务持续时间内实现了相似或更高的准确率。
所提出的混合系统是实时 BCI 应用的有前途的候选者。