Suppr超能文献

系统地描述和预测蛋白质之间的翻译后修饰交叉对话。

Systematic characterization and prediction of post-translational modification cross-talk between proteins.

机构信息

Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK.

出版信息

Bioinformatics. 2019 Aug 1;35(15):2626-2633. doi: 10.1093/bioinformatics/bty1033.

Abstract

MOTIVATION

Protein post-translational modifications (PTMs) regulate a wide range of cellular protein functions. Many PTM sites from the same (intra) or different (inter) proteins often cooperate with each other to perform a function, which is defined as PTM cross-talk. PTM cross-talk within proteins attracted great attentions in the past a few years. However, the inter-protein PTM cross-talk is largely under studied due to its large protein pair space and lack of a gold standard dataset, even though the PTM interplay between proteins is a key element in cell signaling and regulatory networks.

RESULTS

In this study, 199 inter-protein PTM cross-talk pairs in 82 pairs of human proteins were collected from literature, which to our knowledge is the first effort in compiling such dataset. By comparing with background PTM pairs from the same protein pairs, we found that inter-protein cross-talk PTM pairs have higher sequence co-evolution at both PTM residue and motif levels. Also, we found that cross-talk PTMs have higher co-modification across multiple species and 88 human tissues or conditions. Furthermore, we showed that these features are predictive for PTM cross-talk between proteins, and applied a random forest model to integrate these features with achieving an area under the receiver operating characteristic curve of 0.81 in 10-fold cross-validation, prevailing over using any single feature alone. Therefore, this method would be a valuable tool to identify inter-protein PTM cross-talk at proteome-wide scale.

AVAILABILITY AND IMPLEMENTATION

A web server for prioritization of both intra- and inter-protein PTM cross-talk candidates is at http://bioinfo.bjmu.edu.cn/ptm-x/. Python code for local computer is also freely available at https://github.com/huangyh09/PTM-X.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

蛋白质翻译后修饰(PTM)调节广泛的细胞蛋白功能。来自同一(内)或不同(间)蛋白质的许多 PTM 位点经常相互合作执行功能,这被定义为 PTM 串扰。近年来,蛋白质内 PTM 串扰引起了极大的关注。然而,由于蛋白质对空间庞大且缺乏黄金标准数据集,蛋白质间 PTM 串扰在很大程度上仍未得到研究,尽管蛋白质间的 PTM 相互作用是细胞信号转导和调控网络的关键要素。

结果

本研究从文献中收集了 82 对人蛋白中的 199 对间蛋白 PTM 串扰对,据我们所知,这是首次编制此类数据集的工作。通过与来自同一蛋白对的背景 PTM 对进行比较,我们发现间蛋白串扰 PTM 对在 PTM 残基和基序水平上具有更高的序列共进化。此外,我们发现跨多个物种和 88 个人类组织或条件的串扰 PTM 具有更高的共修饰性。此外,我们表明这些特征可预测蛋白质间的 PTM 串扰,并应用随机森林模型将这些特征与实现 10 折交叉验证中 0.81 的接收者操作特征曲线下面积相结合,优于使用任何单一特征。因此,该方法将是在全蛋白质组范围内识别间蛋白 PTM 串扰的有价值工具。

可用性和实现

用于优先考虑内蛋白和间蛋白 PTM 串扰候选物的网络服务器位于 http://bioinfo.bjmu.edu.cn/ptm-x/。也可在 https://github.com/huangyh09/PTM-X 上获得用于本地计算机的 Python 代码。

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验