Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, Texas 78229.
Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, Texas 78229
J Neurosci. 2019 Feb 27;39(9):1566-1587. doi: 10.1523/JNEUROSCI.1781-18.2018. Epub 2018 Dec 28.
KCNQ (Kv7, "M-type") K channels and TRPC (transient receptor potential, "canonical") cation channels are coupled to neuronal discharge properties and are regulated via G-protein-mediated signals. Stimulation of G-coupled receptors both consumes phosphatidylinositol 4,5-bisphosphate (PIP) via phosphalipase Cβ hydrolysis and stimulates PIP synthesis via rises in Ca and other signals. Using brain-slice electrophysiology and Ca imaging from male and female mice, we characterized threshold K currents in dentate gyrus granule cells (DGGCs) and CA1 pyramidal cells, the effects of G-coupled muscarinic M acetylcholine (MR) stimulation on M current and on neuronal discharge properties, and elucidated the intracellular signaling mechanisms involved. We observed disparate signaling cascades between DGGCs and CA1 neurons. DGGCs displayed MR enhancement of M-current, rather than suppression, due to stimulation of PIP synthesis, which was paralleled by increased PIP-gated G-protein coupled inwardly rectifying K currents as well. Deficiency of KCNQ2-containing M-channels ablated the MR-induced enhancement of M-current in DGGCs. Simultaneously, MR stimulation in DGGCs induced robust increases in [Ca], mostly due to TRPC currents, consistent with, and contributing to, neuronal depolarization and hyperexcitability. CA1 neurons did not display such multimodal signaling, but rather M current was suppressed by MR stimulation in these cells, similar to the previously described actions of MR stimulation on M-current in peripheral ganglia that mostly involves PIP depletion. Therefore, these results point to a pleiotropic network of cholinergic signals that direct cell-type-specific, precise control of hippocampal function with strong implications for hyperexcitability and epilepsy. At the neuronal membrane, protein signaling cascades consisting of ion channels and metabotropic receptors govern the electrical properties and neurotransmission of neuronal networks. Muscarinic acetylcholine receptors are G-protein-coupled metabotropic receptors that control the excitability of neurons through regulating ion channels, intracellular Ca signals, and other second-messenger cascades. We have illuminated previously unknown actions of muscarinic stimulation on the excitability of hippocampal principal neurons that include M channels, TRPC (transient receptor potential, "canonical") cation channels, and powerful regulation of lipid metabolism. Our results show that these signaling pathways, and mechanisms of excitability, are starkly distinct between peripheral ganglia and brain, and even between different principal neurons in the hippocampus.
KCNQ(Kv7,“M 型”)K 通道和 TRPC(瞬时受体电位,“经典”)阳离子通道与神经元放电特性相关联,并通过 G 蛋白介导的信号进行调节。通过磷酯酶 Cβ水解消耗磷酸肌醇 4,5-二磷酸(PIP),通过 Ca 和其他信号的升高刺激 PIP 合成,从而刺激 G 蛋白偶联受体。使用雄性和雌性小鼠的脑片电生理学和 Ca 成像,我们描述了齿状回颗粒细胞(DGGC)和 CA1 锥体神经元的阈 K 电流、G 蛋白偶联毒蕈碱 M 乙酰胆碱(MR)刺激对 M 电流和神经元放电特性的影响,并阐明了涉及的细胞内信号转导机制。我们观察到 DGGC 和 CA1 神经元之间存在不同的信号级联。DGGC 显示 MR 增强 M 电流,而不是抑制,这是由于 PIP 合成的刺激,这与增加的 PIP 门控 G 蛋白偶联内向整流 K 电流平行。KCNQ2 含 M 通道的缺乏消除了 DGGC 中 MR 诱导的 M 电流增强。同时,MR 刺激在 DGGC 中诱导了强烈的[Ca]增加,主要是由于 TRPC 电流,与神经元去极化和过度兴奋一致,并有助于神经元去极化和过度兴奋。CA1 神经元没有显示出这种多模态信号,而是 MR 刺激在这些细胞中抑制 M 电流,这类似于先前描述的 MR 刺激在外周神经节中对 M 电流的作用,主要涉及 PIP 耗竭。因此,这些结果指出了胆碱能信号的多效性网络,该网络直接控制海马功能的细胞类型特异性精确控制,对过度兴奋和癫痫有强烈影响。在神经元膜上,由离子通道和代谢型受体组成的蛋白质信号级联控制神经元网络的电特性和神经传递。毒蕈碱乙酰胆碱受体是 G 蛋白偶联的代谢型受体,通过调节离子通道、细胞内 Ca 信号和其他第二信使级联来控制神经元的兴奋性。我们已经阐明了毒蕈碱刺激对海马主要神经元兴奋性的以前未知的作用,包括 M 通道、TRPC(瞬时受体电位,“经典”)阳离子通道和强大的脂质代谢调节。我们的结果表明,这些信号通路和兴奋机制在周围神经节和大脑之间,甚至在海马中的不同主要神经元之间,存在明显的差异。