Suppr超能文献

任务激活会产生虚假但系统的任务功能连接估计膨胀。

Task activations produce spurious but systematic inflation of task functional connectivity estimates.

机构信息

Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.

Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA; Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, NJ, 07102, USA.

出版信息

Neuroimage. 2019 Apr 1;189:1-18. doi: 10.1016/j.neuroimage.2018.12.054. Epub 2018 Dec 28.

Abstract

Most neuroscientific studies have focused on task-evoked activations (activity amplitudes at specific brain locations), providing limited insight into the functional relationships between separate brain locations. Task-state functional connectivity (FC) - statistical association between brain activity time series during task performance - moves beyond task-evoked activations by quantifying functional interactions during tasks. However, many task-state FC studies do not remove the first-order effect of task-evoked activations prior to estimating task-state FC. It has been argued that this results in the ambiguous inference "likely active or interacting during the task", rather than the intended inference "likely interacting during the task". Utilizing a neural mass computational model, we verified that task-evoked activations substantially and inappropriately inflate task-state FC estimates, especially in functional MRI (fMRI) data. Various methods attempting to address this problem have been developed, yet the efficacies of these approaches have not been systematically assessed. We found that most standard approaches for fitting and removing mean task-evoked activations were unable to correct these inflated correlations. In contrast, methods that flexibly fit mean task-evoked response shapes effectively corrected the inflated correlations without reducing effects of interest. Results with empirical fMRI data confirmed the model's predictions, revealing activation-induced task-state FC inflation for both Pearson correlation and psychophysiological interaction (PPI) approaches. These results demonstrate that removal of mean task-evoked activations using an approach that flexibly models task-evoked response shape is an important preprocessing step for valid estimation of task-state FC.

摘要

大多数神经科学研究都集中在任务诱发的激活上(特定脑区的活动幅度),这为理解不同脑区之间的功能关系提供了有限的见解。任务状态功能连接(FC)——在任务执行期间对脑活动时间序列进行统计关联——通过量化任务期间的功能相互作用,超越了任务诱发的激活。然而,许多任务状态 FC 研究在估计任务状态 FC 之前没有去除任务诱发激活的一阶效应。有人认为,这导致了模棱两可的推断“在任务期间可能活跃或相互作用”,而不是预期的推断“在任务期间可能相互作用”。利用神经质量计算模型,我们验证了任务诱发的激活极大地且不恰当地夸大了任务状态 FC 的估计值,尤其是在功能磁共振成像(fMRI)数据中。已经开发了各种试图解决此问题的方法,但这些方法的效果尚未得到系统评估。我们发现,拟合和去除平均任务诱发激活的大多数标准方法都无法纠正这些夸大的相关性。相比之下,灵活拟合平均任务诱发反应形状的方法可以有效地纠正夸大的相关性,而不会降低感兴趣的效果。来自经验 fMRI 数据的结果证实了模型的预测,揭示了两种 Pearson 相关和心理生理交互(PPI)方法的激活诱导的任务状态 FC 膨胀。这些结果表明,使用灵活地对任务诱发的反应形状进行建模的方法去除平均任务诱发的激活是有效估计任务状态 FC 的重要预处理步骤。

相似文献

1
Task activations produce spurious but systematic inflation of task functional connectivity estimates.
Neuroimage. 2019 Apr 1;189:1-18. doi: 10.1016/j.neuroimage.2018.12.054. Epub 2018 Dec 28.
2
The Functional Relevance of Task-State Functional Connectivity.
J Neurosci. 2021 Mar 24;41(12):2684-2702. doi: 10.1523/JNEUROSCI.1713-20.2021. Epub 2021 Feb 4.
4
Activity flow over resting-state networks shapes cognitive task activations.
Nat Neurosci. 2016 Dec;19(12):1718-1726. doi: 10.1038/nn.4406. Epub 2016 Oct 10.
6
Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.
Int J Neural Syst. 2018 Sep;28(7):1850002. doi: 10.1142/S0129065718500028. Epub 2018 Jan 25.
7
Large-scale intrinsic connectivity is consistent across varying task demands.
PLoS One. 2019 Apr 10;14(4):e0213861. doi: 10.1371/journal.pone.0213861. eCollection 2019.
8
Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
Hum Brain Mapp. 2019 Jun 1;40(8):2358-2376. doi: 10.1002/hbm.24528. Epub 2019 Jan 21.
9
Toward Task Connectomics: Examining Whole-Brain Task Modulated Connectivity in Different Task Domains.
Cereb Cortex. 2019 Apr 1;29(4):1572-1583. doi: 10.1093/cercor/bhy055.
10
Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets.
Neuroimage. 2017 Feb 15;147:243-252. doi: 10.1016/j.neuroimage.2016.11.073. Epub 2016 Dec 1.

引用本文的文献

1
Distributed Cortical Network Dynamics of Binocular Convergent Eye Movements in Humans.
bioRxiv. 2025 Aug 21:2025.08.15.670412. doi: 10.1101/2025.08.15.670412.
2
Challenges in the measurement and interpretation of dynamic functional connectivity.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00366. eCollection 2024.
3
Synchronous high-amplitude co-fluctuations of functional brain networks during movie-watching.
Imaging Neurosci (Camb). 2023 Nov 7;1. doi: 10.1162/imag_a_00026. eCollection 2023.
4
Intrinsic dynamic shapes responses to external stimulation in the human brain.
Elife. 2025 Jul 3;14:RP104996. doi: 10.7554/eLife.104996.
5
Predicting response speed and age from task-evoked effective connectivity.
Netw Neurosci. 2025 Apr 30;9(2):591-614. doi: 10.1162/netn_a_00447. eCollection 2025.
7
Exploring anterior thalamus functional connectivity with cortical regions in prospective memory with ultra-high-field functional MRI.
Brain Commun. 2025 Apr 8;7(2):fcaf135. doi: 10.1093/braincomms/fcaf135. eCollection 2025.
8
Improved whole-brain reconfiguration efficiency reveals mechanisms of speech rehabilitation in cleft lip and palate patients: an fMRI study.
Front Aging Neurosci. 2025 Mar 4;17:1536658. doi: 10.3389/fnagi.2025.1536658. eCollection 2025.
9
Connectome-wide brain signature during fast-food advertisement exposure predicts BMI at 2 years.
Soc Cogn Affect Neurosci. 2025 Mar 10;20(1). doi: 10.1093/scan/nsaf018.

本文引用的文献

1
Mapping the human brain's cortical-subcortical functional network organization.
Neuroimage. 2019 Jan 15;185:35-57. doi: 10.1016/j.neuroimage.2018.10.006. Epub 2018 Oct 3.
2
Disambiguating brain functional connectivity.
Neuroimage. 2018 Jun;173:540-550. doi: 10.1016/j.neuroimage.2018.01.053. Epub 2018 Feb 21.
3
Cognitive task information is transferred between brain regions via resting-state network topology.
Nat Commun. 2017 Oct 18;8(1):1027. doi: 10.1038/s41467-017-01000-w.
4
Empirical validation of directed functional connectivity.
Neuroimage. 2017 Feb 1;146:275-287. doi: 10.1016/j.neuroimage.2016.11.037. Epub 2016 Nov 14.
5
Evidence for Two Independent Factors that Modify Brain Networks to Meet Task Goals.
Cell Rep. 2016 Oct 25;17(5):1276-1288. doi: 10.1016/j.celrep.2016.10.002.
6
Synaptic scaling rule preserves excitatory-inhibitory balance and salient neuronal network dynamics.
Nat Neurosci. 2016 Dec;19(12):1690-1696. doi: 10.1038/nn.4415. Epub 2016 Oct 17.
7
Activity flow over resting-state networks shapes cognitive task activations.
Nat Neurosci. 2016 Dec;19(12):1718-1726. doi: 10.1038/nn.4406. Epub 2016 Oct 10.
8
Data Quality Influences Observed Links Between Functional Connectivity and Behavior.
Cereb Cortex. 2017 Sep 1;27(9):4492-4502. doi: 10.1093/cercor/bhw253.
9
A multi-modal parcellation of human cerebral cortex.
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
10
Attentional modulation of background connectivity between ventral visual cortex and the medial temporal lobe.
Neurobiol Learn Mem. 2016 Oct;134 Pt A(Pt A):115-122. doi: 10.1016/j.nlm.2016.06.011. Epub 2016 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验