Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA; Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, NJ, 07102, USA.
Neuroimage. 2019 Apr 1;189:1-18. doi: 10.1016/j.neuroimage.2018.12.054. Epub 2018 Dec 28.
Most neuroscientific studies have focused on task-evoked activations (activity amplitudes at specific brain locations), providing limited insight into the functional relationships between separate brain locations. Task-state functional connectivity (FC) - statistical association between brain activity time series during task performance - moves beyond task-evoked activations by quantifying functional interactions during tasks. However, many task-state FC studies do not remove the first-order effect of task-evoked activations prior to estimating task-state FC. It has been argued that this results in the ambiguous inference "likely active or interacting during the task", rather than the intended inference "likely interacting during the task". Utilizing a neural mass computational model, we verified that task-evoked activations substantially and inappropriately inflate task-state FC estimates, especially in functional MRI (fMRI) data. Various methods attempting to address this problem have been developed, yet the efficacies of these approaches have not been systematically assessed. We found that most standard approaches for fitting and removing mean task-evoked activations were unable to correct these inflated correlations. In contrast, methods that flexibly fit mean task-evoked response shapes effectively corrected the inflated correlations without reducing effects of interest. Results with empirical fMRI data confirmed the model's predictions, revealing activation-induced task-state FC inflation for both Pearson correlation and psychophysiological interaction (PPI) approaches. These results demonstrate that removal of mean task-evoked activations using an approach that flexibly models task-evoked response shape is an important preprocessing step for valid estimation of task-state FC.
大多数神经科学研究都集中在任务诱发的激活上(特定脑区的活动幅度),这为理解不同脑区之间的功能关系提供了有限的见解。任务状态功能连接(FC)——在任务执行期间对脑活动时间序列进行统计关联——通过量化任务期间的功能相互作用,超越了任务诱发的激活。然而,许多任务状态 FC 研究在估计任务状态 FC 之前没有去除任务诱发激活的一阶效应。有人认为,这导致了模棱两可的推断“在任务期间可能活跃或相互作用”,而不是预期的推断“在任务期间可能相互作用”。利用神经质量计算模型,我们验证了任务诱发的激活极大地且不恰当地夸大了任务状态 FC 的估计值,尤其是在功能磁共振成像(fMRI)数据中。已经开发了各种试图解决此问题的方法,但这些方法的效果尚未得到系统评估。我们发现,拟合和去除平均任务诱发激活的大多数标准方法都无法纠正这些夸大的相关性。相比之下,灵活拟合平均任务诱发反应形状的方法可以有效地纠正夸大的相关性,而不会降低感兴趣的效果。来自经验 fMRI 数据的结果证实了模型的预测,揭示了两种 Pearson 相关和心理生理交互(PPI)方法的激活诱导的任务状态 FC 膨胀。这些结果表明,使用灵活地对任务诱发的反应形状进行建模的方法去除平均任务诱发的激活是有效估计任务状态 FC 的重要预处理步骤。