Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Medicine, EPFL, 1015, Lausanne, Switzerland.
Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Nat Commun. 2019 Jan 2;10(1):3. doi: 10.1038/s41467-018-07924-1.
In addition to their use in DNA sequencing, ultrathin nanopore membranes have potential applications in detecting topological variations in deoxyribonucleic acid (DNA). This is due to the fact that when topologically edited DNA molecules, driven by electrophoretic forces, translocate through a narrow orifice, transient residings of edited segments inside the orifice modulate the ionic flow. Here we utilize two programmable barcoding methods based on base-pairing, namely forming a gap in dsDNA and creating protrusion sites in ssDNA for generating a hybrid DNA complex. We integrate a discriminative noise analysis for ds and ss DNA topologies into the threshold detection, resulting in improved multi-level signal detection and consequent extraction of reliable information about topological variations. Moreover, the positional information of the barcode along the template sequence can be determined unambiguously. All methods may be further modified to detect nicks in DNA, and thereby detect DNA damage and repair sites.
除了在 DNA 测序中的应用,超薄膜纳米孔在检测脱氧核糖核酸 (DNA) 的拓扑变化方面也具有潜在的应用。这是因为当拓扑编辑的 DNA 分子在电泳力的驱动下穿过狭窄的孔道时,孔道内编辑片段的瞬时停留会调节离子流。在这里,我们利用了两种基于碱基配对的可编程条形码方法,即在 dsDNA 中形成缺口和在 ssDNA 中创建突出位点,以生成杂交 DNA 复合物。我们将 ds 和 ss DNA 拓扑结构的判别噪声分析纳入到阈值检测中,从而提高了多级信号检测,并因此提取了关于拓扑变化的可靠信息。此外,条形码在模板序列上的位置信息可以被明确地确定。所有的方法都可以进一步修改,以检测 DNA 中的缺口,从而检测 DNA 损伤和修复部位。