Suppr超能文献

用于趋硬性研究和组织工程支架的具有刚度梯度的合成水凝胶。

Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds.

作者信息

Whang Minji, Kim Jungwook

机构信息

1Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea.

出版信息

Tissue Eng Regen Med. 2016 Apr 5;13(2):126-139. doi: 10.1007/s13770-016-0026-x. eCollection 2016 Apr.

Abstract

Migration of cells along the right direction is of paramount importance in a number of circumstances such as immune response, embryonic developments, morphogenesis, and healing of wounds and scars. While it has been known for a while that spatial gradients in chemical cues guide the direction of cell migration, the significance of the gradient in mechanical cues, such as stiffness of extracellular matrices (ECMs), in directed migration of cells has only recently emerged. With advances in synthetic chemistry, micro-fabrication techniques, and methods to characterize mechanical properties at a length scale even smaller than a single cell, synthetic ECMs with spatially controlled stiffness have been created with variations in design parameters. Since then, the synthetic ECMs have served as platforms to study the migratory behaviors of cells in the presence of the stiffness gradient of ECM and also as scaffolds for the regeneration of tissues. In this review, we highlight recent studies in cell migration directed by the stiffness gradient, called durotaxis, and discuss the mechanisms of durotaxis. We also summarize general methods and design principles to create synthetic ECMs with the stiffness gradients and, finally, conclude by discussing current limitations and future directions of synthetic ECMs for the study of durotaxis and the scaffold for tissue engineering.

摘要

在许多情况下,如免疫反应、胚胎发育、形态发生以及伤口和疤痕愈合,细胞沿正确方向迁移至关重要。虽然人们早就知道化学信号的空间梯度引导细胞迁移方向,但机械信号梯度,如细胞外基质(ECM)的硬度,在细胞定向迁移中的重要性直到最近才显现出来。随着合成化学、微制造技术以及在比单个细胞更小的长度尺度上表征机械性能方法的进步,已经创建了具有空间可控硬度且设计参数可变的合成ECM。从那时起,合成ECM既作为研究细胞在ECM硬度梯度存在下迁移行为的平台,也作为组织再生的支架。在这篇综述中,我们重点介绍了由硬度梯度引导的细胞迁移(称为趋硬性)的最新研究,并讨论了趋硬性的机制。我们还总结了创建具有硬度梯度的合成ECM的一般方法和设计原则,最后通过讨论合成ECM在趋硬性研究和组织工程支架方面的当前局限性和未来方向来得出结论。

相似文献

1
Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds.
Tissue Eng Regen Med. 2016 Apr 5;13(2):126-139. doi: 10.1007/s13770-016-0026-x. eCollection 2016 Apr.
2
Schwann cell durotaxis can be guided by physiologically relevant stiffness gradients.
Biomater Res. 2018 May 9;22:14. doi: 10.1186/s40824-018-0124-z. eCollection 2018.
3
Collective durotaxis along a self-generated stiffness gradient in vivo.
Nature. 2021 Dec;600(7890):690-694. doi: 10.1038/s41586-021-04210-x. Epub 2021 Dec 8.
4
Method for Investigating Fibroblast Durotaxis.
Methods Mol Biol. 2021;2299:227-236. doi: 10.1007/978-1-0716-1382-5_17.
6
Durotaxis by Human Cancer Cells.
Biophys J. 2019 Feb 19;116(4):670-683. doi: 10.1016/j.bpj.2019.01.009. Epub 2019 Jan 12.
8
Interplay among cell migration, shaping, and traction force on a matrix with cell-scale stiffness heterogeneity.
Biophys Physicobiol. 2022 Sep 13;19:e190036. doi: 10.2142/biophysico.bppb-v19.0036. eCollection 2022.
9
Hydrogel Models with Stiffness Gradients for Interrogating Pancreatic Cancer Cell Fate.
Bioengineering (Basel). 2021 Mar 13;8(3):37. doi: 10.3390/bioengineering8030037.
10
Photooxidatively crosslinked acellular tumor extracellular matrices as potential tumor engineering scaffolds.
Acta Biomater. 2018 Apr 15;71:460-473. doi: 10.1016/j.actbio.2018.03.020. Epub 2018 Mar 17.

引用本文的文献

1
Dual nanofiber and graphene reinforcement of 3D printed biomimetic supports for bone tissue repair.
RSC Adv. 2024 Oct 15;14(44):32517-32532. doi: 10.1039/d4ra06167e. eCollection 2024 Oct 9.
2
Integration of immune cells in organs-on-chips: a tutorial.
Front Bioeng Biotechnol. 2023 Jun 1;11:1191104. doi: 10.3389/fbioe.2023.1191104. eCollection 2023.
3
Mechanical guidance of self-condensation patterns of differentiating progeny.
iScience. 2022 Sep 27;25(10):105109. doi: 10.1016/j.isci.2022.105109. eCollection 2022 Oct 21.
4
Visible-Light Stiffness Patterning of GelMA Hydrogels Towards Scar Tissue Models.
Front Cell Dev Biol. 2022 Jul 5;10:946754. doi: 10.3389/fcell.2022.946754. eCollection 2022.
5
Patterned photocrosslinking to establish stiffness anisotropies in fibrous 3D hydrogels.
Acta Biomater. 2022 Mar 15;141:39-47. doi: 10.1016/j.actbio.2021.12.028. Epub 2021 Dec 28.
6
Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine.
Pharmaceutics. 2021 May 26;13(6):792. doi: 10.3390/pharmaceutics13060792.
7
Durotaxis: the mechanical control of directed cell migration.
FEBS J. 2022 May;289(10):2736-2754. doi: 10.1111/febs.15862. Epub 2021 May 7.
8
Mechanical Model for Durotactic Cell Migration.
ACS Biomater Sci Eng. 2019 Aug 12;5(8):3954-3963. doi: 10.1021/acsbiomaterials.8b01365. Epub 2019 Mar 12.
9
Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment.
Chem Rev. 2017 Oct 25;117(20):12764-12850. doi: 10.1021/acs.chemrev.7b00094. Epub 2017 Oct 9.

本文引用的文献

1
Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols.
Biomater Sci. 2014 Nov 30;2(11):1640-1651. doi: 10.1039/c4bm00262h. Epub 2014 Sep 4.
2
Hydrogels with tunable stress relaxation regulate stem cell fate and activity.
Nat Mater. 2016 Mar;15(3):326-34. doi: 10.1038/nmat4489. Epub 2015 Nov 30.
3
The cost of attack in competing networks.
J R Soc Interface. 2015 Nov 6;12(112). doi: 10.1098/rsif.2015.0770.
4
Ultra-responsive soft matter from strain-stiffening hydrogels.
Nat Commun. 2014 Dec 16;5:5808. doi: 10.1038/ncomms6808.
5
A novel 2.5D culture platform to investigate the role of stiffness gradients on adhesion-independent cell migration.
PLoS One. 2014 Oct 13;9(10):e110453. doi: 10.1371/journal.pone.0110453. eCollection 2014.
6
Interplay of matrix stiffness and protein tethering in stem cell differentiation.
Nat Mater. 2014 Oct;13(10):979-87. doi: 10.1038/nmat4051. Epub 2014 Aug 10.
7
Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization.
Adv Funct Mater. 2013 Jul 19;23(7):3432-3442. doi: 10.1002/adfm.201203580.
8
Micro-composite substrates for the study of cell-matrix mechanical interactions.
J Mech Behav Biomed Mater. 2014 Oct;38:232-41. doi: 10.1016/j.jmbbm.2014.01.008. Epub 2014 Jan 28.
9
A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.
Integr Biol (Camb). 2013 Nov;5(11):1344-54. doi: 10.1039/c3ib40078f. Epub 2013 Sep 24.
10
Guiding cell migration by tugging.
Curr Opin Cell Biol. 2013 Oct;25(5):619-26. doi: 10.1016/j.ceb.2013.06.003. Epub 2013 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验