Laboratory of Genome Maintenance.
Laboratory of Chromatin Regulatory Network, Department of Genome Biology, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan.
J Biochem. 2019 Apr 1;165(4):297-299. doi: 10.1093/jb/mvy124.
Epigenetic systems are organized by different types of modifications on histones and DNA. To determine how epigenetic systems can produce variable, yet stable cellular outcomes, understanding the collaboration between these modifications is the key. A recent study by Yamagata and Kobayashi revealed the direct interplay between the regulation of two epigenetic modifications: DNA de-methylation by TET2 and histone H3-K36 methylation. Mechanistically, this finding could explain how cells are protected from oncogenesis by maintaining the integrity of active transcription. The recent identification of epigenetic modifier mutations in leukaemia suggested that it is not just the turning 'on' and 'off' of particular transcriptional events that causes disease occurrence, but rather it is the aberration in epigenetic regulation, i.e. the timing and duration of the activation/inactivation of these transcripts. Thus, a comprehensive understanding of how epigenetic interplays tune transcription will be the new perspective for disease research.
表观遗传系统通过组蛋白和 DNA 上的不同类型修饰来组织。为了确定表观遗传系统如何产生可变化但稳定的细胞结果,理解这些修饰之间的协作是关键。最近由 Yamagata 和 Kobayashi 进行的一项研究揭示了两种表观遗传修饰调控之间的直接相互作用:TET2 介导的 DNA 去甲基化和组蛋白 H3-K36 甲基化。从机制上讲,这一发现可以解释细胞如何通过维持活跃转录的完整性来防止癌变。最近在白血病中发现的表观遗传修饰因子突变表明,导致疾病发生的不仅仅是特定转录事件的“开启”和“关闭”,而是表观遗传调控的失常,即这些转录物的激活/失活的时间和持续时间。因此,全面了解表观遗传相互作用如何调节转录将为疾病研究提供新视角。