Li Fuxiang, Zhao Xiao-Qiang
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
J Math Biol. 2019 Apr;78(5):1553-1579. doi: 10.1007/s00285-018-1319-6. Epub 2019 Jan 4.
Many infectious diseases have seasonal trends and exhibit variable periods of peak seasonality. Understanding the population dynamics due to seasonal changes becomes very important for predicting and controlling disease transmission risks. In order to investigate the impact of time-dependent delays on disease control, we propose an SEIRS epidemic model with a periodic latent period. We introduce the basic reproduction ratio [Formula: see text] for this model and establish a threshold type result on its global dynamics in terms of [Formula: see text]. More precisely, we show that the disease-free periodic solution is globally attractive if [Formula: see text]; while the system admits a positive periodic solution and the disease is uniformly persistent if [Formula: see text]. Numerical simulations are also carried out to illustrate the analytic results. In addition, we find that the use of the temporal average of the periodic delay may underestimate or overestimate the real value of [Formula: see text].
许多传染病具有季节性趋势,且呈现出不同的季节性高峰时期。了解因季节变化导致的种群动态对于预测和控制疾病传播风险变得非常重要。为了研究与时间相关的延迟对疾病控制的影响,我们提出了一个具有周期性潜伏期的SEIRS传染病模型。我们为此模型引入了基本再生数[公式:见原文],并根据[公式:见原文]建立了关于其全局动态的阈值型结果。更确切地说,我们表明如果[公式:见原文],则无病周期解是全局吸引的;而如果[公式:见原文],则系统存在一个正周期解且疾病是一致持续的。还进行了数值模拟以说明分析结果。此外,我们发现使用周期性延迟的时间平均值可能会低估或高估[公式:见原文]的实际值。