Rosenberger Matthew R, Dass Chandriker Kavir, Chuang Hsun-Jen, Sivaram Saujan V, McCreary Kathleen M, Hendrickson Joshua R, Jonker Berend T
Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States.
Sensors Directorate , Air Force Research Laboratory , Wright-Patterson AFB , Ohio 45433 , United States.
ACS Nano. 2019 Jan 22;13(1):904-912. doi: 10.1021/acsnano.8b08730. Epub 2019 Jan 9.
We present a paradigm for encoding strain into two-dimensional materials (2DMs) to create and deterministically place single-photon emitters (SPEs) in arbitrary locations with nanometer-scale precision. Our material platform consists of a 2DM placed on top of a deformable polymer film. Upon application of sufficient mechanical stress using an atomic force microscope tip, the 2DM/polymer composite deforms, resulting in formation of highly localized strain fields with excellent control and repeatability. We show that SPEs are created and localized at these nanoindents and exhibit single-photon emission up to 60 K, the highest temperature reported in these materials. This quantum calligraphy allows deterministic placement and real time design of arbitrary patterns of SPEs for facile coupling with photonic waveguides, cavities, and plasmonic structures. In addition to enabling versatile placement of SPEs, these results present a general methodology for imparting strain into 2DM with nanometer-scale precision, providing an invaluable tool for further investigations and future applications of strain engineering of 2DM and 2DM devices.
我们提出了一种将应变编码到二维材料(2DMs)中的范例,以在任意位置创建并以纳米级精度确定性地放置单光子发射器(SPEs)。我们的材料平台由放置在可变形聚合物薄膜之上的二维材料组成。使用原子力显微镜尖端施加足够的机械应力时,二维材料/聚合物复合材料会发生变形,从而形成具有出色控制能力和可重复性的高度局部化应变场。我们表明,单光子发射器在这些纳米压痕处产生并定位,并在高达60 K的温度下表现出单光子发射,这是这些材料中报道的最高温度。这种量子书法允许对单光子发射器的任意图案进行确定性放置和实时设计,以便与光子波导、腔和等离子体结构轻松耦合。除了能够实现单光子发射器的通用放置外,这些结果还提出了一种以纳米级精度将应变赋予二维材料的通用方法,为二维材料和二维材料器件的应变工程的进一步研究和未来应用提供了宝贵的工具。