Suppr超能文献

使用虚拟标志物定位全身低剂量 CT 图像中的体部区域。

Body region localization in whole-body low-dose CT images of PET/CT scans using virtual landmarks.

机构信息

College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.

Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Med Phys. 2019 Mar;46(3):1286-1299. doi: 10.1002/mp.13376. Epub 2019 Jan 24.

Abstract

PURPOSE

Radiological imaging and image interpretation for clinical decision making are mostly specific to each body region such as head and neck, thorax, abdomen, pelvis, and extremities. In this study, we present a new solution to trim automatically the given axial image stack into image volumes satisfying the given body region definition.

METHODS

The proposed approach consists of the following steps. First, a set of reference objects is selected and roughly segmented. Virtual landmarks (VLs) for the objects are then identified by using principal component analysis and recursive subdivision of the object via the principal axes system. The VLs can be defined based on just the binary objects or objects with gray values also considered. The VLs may lie anywhere with respect to the object, inside or outside, and rarely on the object surface, and are tethered to the object. Second, a classic neural network regressor is configured to learn the geometric mapping relationship between the VLs and the boundary locations of each body region. The trained network is then used to predict the locations of the body region boundaries. In this study, we focus on three body regions - thorax, abdomen, and pelvis, and predict their superior and inferior axial locations denoted by TS(I), TI(I), AS(I), AI(I), PS(I), and PI(I), respectively, for any given volume image I. Two kinds of reference objects - the skeleton and the lungs and airways, are employed to test the localization performance of the proposed approach.

RESULTS

Our method is tested by using low-dose unenhanced computed tomography (CT) images of 180 near whole-body F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) scans (including 34 whole-body scans) which are randomly divided into training and testing sets with a ratio of 85%:15%. The procedure is repeated six times and three times for the case of lungs and skeleton, respectively, with different divisions of the entire data set at this proportion. For the case of using skeleton as a reference object, the overall mean localization error for the six locations expressed as number of slices (nS) and distance (dS) in mm, is found to be nS: 3.4, 4.7, 4.1, 5.2, 5.2, and 3.9; dS: 13.4, 18.9, 16.5, 20.8, 20.8, and 15.5 mm for binary objects; nS: 4.1, 5.7, 4.3, 5.9, 5.9, and 4.0; dS: 16.2, 22.7, 17.2, 23.7, 23.7, and 16.1 mm for gray objects, respectively. For the case of using lungs and airways as a reference object, the corresponding results are, nS: 4.0, 5.3, 4.1, 6.9, 6.9, and 7.4; dS: 15.0, 19.7, 15.3, 26.2, 26.2, and 27.9 mm for binary objects; nS: 3.9, 5.4, 3.6, 7.2, 7.2, and 7.6; dS: 14.6, 20.1, 13.7, 27.3, 27.3, and 28.6 mm for gray objects, respectively.

CONCLUSIONS

Precise body region identification automatically in whole-body or body region tomographic images is vital for numerous medical image analysis and analytics applications. Despite its importance, this issue has received very little attention in the literature. We present a solution to this problem in this study using the concept of virtual landmarks. The method achieves localization accuracy within 2-3 slices, which is roughly comparable to the variation found in localization by experts. As long as the reference objects can be roughly segmented, the method with its learned VLs-to-boundary location relationship and predictive ability is transferable from one image modality to another.

摘要

目的

用于临床决策的放射影像学和图像解释主要针对特定的身体区域,如头颈部、胸部、腹部、骨盆和四肢。在这项研究中,我们提出了一种新的解决方案,可以自动将给定的轴向图像堆栈裁剪为满足给定身体区域定义的图像体积。

方法

所提出的方法包括以下步骤。首先,选择一组参考对象并进行大致分割。然后通过主成分分析和通过主坐标轴系统递归细分对象来识别对象的虚拟地标 (VL)。VL 可以基于仅二进制对象或也考虑灰度值的对象来定义。VL 可以位于对象内部或外部,很少位于对象表面,并且与对象相连。其次,配置经典神经网络回归器以学习 VL 和每个身体区域边界位置之间的几何映射关系。然后使用训练好的网络来预测身体区域边界的位置。在这项研究中,我们专注于三个身体区域 - 胸部、腹部和骨盆,并分别预测它们的轴向上下位置,分别表示为 TS(I)、TI(I)、AS(I)、AI(I)、PS(I)和 PI(I),对于任何给定的体积图像 I。使用两种类型的参考对象 - 骨骼和肺部及气道,来测试所提出方法的定位性能。

结果

我们的方法通过使用 180 个低剂量非增强 CT(计算机断层扫描)全身 F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(FDG-PET/CT)扫描(包括 34 个全身扫描)进行测试,这些扫描随机分为训练集和测试集,比例为 85%:15%。该过程重复了六次,对于肺部和骨骼的情况,分别进行了三次,整个数据集的不同部分按此比例进行了划分。对于使用骨骼作为参考对象的情况,六个位置的总体平均定位误差表示为切片数 (nS) 和距离 (dS),以毫米为单位,结果为 nS: 3.4、4.7、4.1、5.2、5.2 和 3.9;dS: 13.4、18.9、16.5、20.8、20.8 和 15.5 毫米用于二进制对象;nS: 4.1、5.7、4.3、5.9、5.9 和 4.0;dS: 16.2、22.7、17.2、23.7、23.7 和 16.1 毫米用于灰度对象。对于使用肺部和气道作为参考对象的情况,相应的结果为 nS: 4.0、5.3、4.1、6.9、6.9 和 7.4;dS: 15.0、19.7、15.3、26.2、26.2 和 27.9 毫米用于二进制对象;nS: 3.9、5.4、3.6、7.2、7.2 和 7.6;dS: 14.6、20.1、13.7、27.3、27.3 和 28.6 毫米用于灰度对象。

结论

在全身或身体区域断层图像中自动进行精确的身体区域识别对于许多医学图像分析和分析应用至关重要。尽管其重要性,但该问题在文献中很少受到关注。我们在本研究中使用虚拟地标概念来解决这个问题。该方法的定位精度在 2-3 个切片内,与专家定位的变化大致相当。只要可以大致分割参考对象,该方法及其学习的 VL 到边界位置关系和预测能力就可以从一种图像模式转移到另一种模式。

相似文献

1
Body region localization in whole-body low-dose CT images of PET/CT scans using virtual landmarks.
Med Phys. 2019 Mar;46(3):1286-1299. doi: 10.1002/mp.13376. Epub 2019 Jan 24.
2
Automatic thoracic body region localization.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10134. doi: 10.1117/12.2254862. Epub 2017 Mar 3.
3
BRR-Net: A tandem architectural CNN-RNN for automatic body region localization in CT images.
Med Phys. 2020 Oct;47(10):5020-5031. doi: 10.1002/mp.14439. Epub 2020 Aug 20.
4
Automatic anatomy recognition in whole-body PET/CT images.
Med Phys. 2016 Jan;43(1):613. doi: 10.1118/1.4939127.
5
Quantification of body-torso-wide tissue composition on low-dose CT images via automatic anatomy recognition.
Med Phys. 2019 Mar;46(3):1272-1285. doi: 10.1002/mp.13373. Epub 2019 Feb 5.
6
Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.
Med Image Anal. 2014 Jul;18(5):752-71. doi: 10.1016/j.media.2014.04.003. Epub 2014 Apr 24.
7
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.
Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7.
8
Virtual Landmarks.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10135. doi: 10.1117/12.2254855. Epub 2017 Mar 3.
10
Deep-JASC: joint attenuation and scatter correction in whole-body F-FDG PET using a deep residual network.
Eur J Nucl Med Mol Imaging. 2020 Oct;47(11):2533-2548. doi: 10.1007/s00259-020-04852-5. Epub 2020 May 15.

引用本文的文献

2
How many models/atlases are needed as priors for capturing anatomic population variations?
Med Image Anal. 2019 Dec;58:101550. doi: 10.1016/j.media.2019.101550. Epub 2019 Sep 3.

本文引用的文献

1
Virtual Landmarks.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10135. doi: 10.1117/12.2254855. Epub 2017 Mar 3.
2
Automatic thoracic body region localization.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10134. doi: 10.1117/12.2254862. Epub 2017 Mar 3.
3
Automatic Segmentation and Quantification of White and Brown Adipose Tissues from PET/CT Scans.
IEEE Trans Med Imaging. 2017 Mar;36(3):734-744. doi: 10.1109/TMI.2016.2636188. Epub 2016 Dec 6.
4
Chest Fat Quantification via CT Based on Standardized Anatomy Space in Adult Lung Transplant Candidates.
PLoS One. 2017 Jan 3;12(1):e0168932. doi: 10.1371/journal.pone.0168932. eCollection 2017.
5
MR Image Analytics to Characterize the Upper Airway Structure in Obese Children with Obstructive Sleep Apnea Syndrome.
PLoS One. 2016 Aug 3;11(8):e0159327. doi: 10.1371/journal.pone.0159327. eCollection 2016.
6
Quantitative normal thoracic anatomy at CT.
Comput Med Imaging Graph. 2016 Jul;51:1-10. doi: 10.1016/j.compmedimag.2016.03.005. Epub 2016 Apr 1.
7
Automatic anatomy recognition in whole-body PET/CT images.
Med Phys. 2016 Jan;43(1):613. doi: 10.1118/1.4939127.
8
Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.
PLoS One. 2015 Nov 23;10(11):e0143327. doi: 10.1371/journal.pone.0143327. eCollection 2015.
9
Multi-stage thresholded region classification for whole-body PET-CT lymphoma studies.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):569-76. doi: 10.1007/978-3-319-10404-1_71.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验